生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 163-174.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0500
• 研究报告 • 上一篇
贾子健1,2(
), 王宝强1,2, 陈立飞1,2, 王义真1,2,3, 魏小红1,3, 赵颖1,2(
)
收稿日期:2024-05-28
出版日期:2025-02-26
发布日期:2025-02-28
通讯作者:
赵颖,女,博士,讲师,研究方向 :植物逆境生理、信号转导机制;E-mail: zhaoy@gsau.edu.cn作者简介:贾子健,男,硕士,研究方向 :植物逆境生理;E-mail: 18210951289@163.com
基金资助:
JIA Zi-jian1,2(
), WANG Bao-qiang1,2, CHEN Li-fei1,2, WANG Yi-zhen1,2,3, WEI Xiao-hong1,3, ZHAO Ying1,2(
)
Received:2024-05-28
Published:2025-02-26
Online:2025-02-28
摘要:
目的 CHX(cation/H+ exchanger)基因家族是植物特有的一价阳离子转运蛋白,在植物的生长发育、盐碱胁迫响应中发挥重要作用。从藜麦全基因组范围内鉴定CHX基因家族成员,分析相关基因表达特点,为后续CHX基因功能深入研究提供支撑。 方法 利用生物信息学方法,从藜麦基因组中鉴定CHX基因家族成员,并对其理化特性、系统进化关系、染色体定位、基因复制、基因结构和启动子区顺式作用元件等进行分析。利用转录组数据结合RT-qPCR分析CHX家族基因在混合盐碱胁迫和外源NO处理下不同器官的表达模式。采用烟草瞬时转化法检测目标蛋白的亚细胞定位情况。 结果 在藜麦基因组中共鉴定到51个CHX基因,系统发育分析将CHX家族划分为5个亚族。片段复制是CHX基因家族进化的主要原因,该基因家族经历了强烈的纯化选择。在转录组分析基础上,对其中10个CHX基因在盐碱胁迫和NO处理下的RT-qPCR鉴定分析表明,除CqCHX-10和CqCHX-25不表达以外,其余8个基因均在茎和根系中响应盐碱胁迫,并受到外源NO的正向调控。进一步对CqCHX-17蛋白亚细胞定位发现,该基因定位于细胞核和叶绿体。 结论 从藜麦基因组中鉴定出51个CHX家族成员。不同成员在不同组织中表现出不同的表达模式。CHX基因家族成员对盐碱胁迫和外源NO正向响应,CqCHX-17可能参与K+转运,并参与叶绿体基质pH调节。
贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174.
JIA Zi-jian, WANG Bao-qiang, CHEN Li-fei, WANG Yi-zhen, WEI Xiao-hong, ZHAO Ying. Expression Patterns of CHX Gene Family in Quinoa in Response to NO under Saline-alkali Stress[J]. Biotechnology Bulletin, 2025, 41(2): 163-174.
| 基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|
| CqCHX-6 | TGACTGGTGTGATTGCTCCC | GTTGCTGGCTTCCAGGAGAT |
| CqCHX-10 | CAGCGCTGGTGATGAGAGAT | TCTTCCTGAGTCGGCAAACC |
| CqCHX-16 | TCCATGTGCATTGCTGTTGC | AGAAGAATCCAGGCTGCCAC |
| CqCHX-17 | GTCCACTTCAGAGCAGACCC | CATCAGGTGCCTTGGAGTGT |
| CqCHX-18 | GTGAGCCAGTGGATGAGCTT | CAAATGCACCGAAAAGGGCA |
| CqCHX-22 | GAACGCTTTGCCAACACCAT | TGATCGCCTTCCTCCCTGTA |
| CqCHX-24 | CAACCTCCACGGGAGTCTTC | GAACACCTCGCTACGACCAA |
| CqCHX-25 | GTTAGCCAAGGCCCCTTCAT | CATGGCCATACGGCCTACAT |
| CqCHX-26 | GGCATCACATTGCCGTTTGT | ATAGAGAGGGCAACCCCCAT |
| CqCHX-48 | GGGTTTACTCGTGCTGGTGA | GGACTAACGCATCCCTAGCC |
| CqTUB-9 | GAGATGTTCCGTCGTGTGAGTGAG | ATCGGCAGTTGCATCCTGGTATTG |
表1 CHX基因家族RT-qPCR引物
Table 1 RT-qPCR primers for CHX gene family
| 基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|
| CqCHX-6 | TGACTGGTGTGATTGCTCCC | GTTGCTGGCTTCCAGGAGAT |
| CqCHX-10 | CAGCGCTGGTGATGAGAGAT | TCTTCCTGAGTCGGCAAACC |
| CqCHX-16 | TCCATGTGCATTGCTGTTGC | AGAAGAATCCAGGCTGCCAC |
| CqCHX-17 | GTCCACTTCAGAGCAGACCC | CATCAGGTGCCTTGGAGTGT |
| CqCHX-18 | GTGAGCCAGTGGATGAGCTT | CAAATGCACCGAAAAGGGCA |
| CqCHX-22 | GAACGCTTTGCCAACACCAT | TGATCGCCTTCCTCCCTGTA |
| CqCHX-24 | CAACCTCCACGGGAGTCTTC | GAACACCTCGCTACGACCAA |
| CqCHX-25 | GTTAGCCAAGGCCCCTTCAT | CATGGCCATACGGCCTACAT |
| CqCHX-26 | GGCATCACATTGCCGTTTGT | ATAGAGAGGGCAACCCCCAT |
| CqCHX-48 | GGGTTTACTCGTGCTGGTGA | GGACTAACGCATCCCTAGCC |
| CqTUB-9 | GAGATGTTCCGTCGTGTGAGTGAG | ATCGGCAGTTGCATCCTGGTATTG |
重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks | 重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks |
|---|---|---|---|---|---|---|---|
| CqCHX-1-CqCHX-11 | 0.015 | 0.106 | 0.140 | CqCHX-17-CqCHX-24 | 0.092 | 0.471 | 0.196 |
| CqCHX-2-CqCHX-33 | 0.143 | 0.781 | 0.183 | CqCHX-17-CqCHX-26 | 0.111 | 0.615 | 0.181 |
| CqCHX-4-CqCHX-13 | 0.057 | 0.182 | 0.316 | CqCHX-18-CqCHX-26 | 0.032 | 0.166 | 0.191 |
| CqCHX-4-CqCHX-5 | 0.111 | 0.296 | 0.376 | CqCHX-18-CqCHX-25 | 0.104 | 0.610 | 0.170 |
| CqCHX-6-CqCHX-22 | 0.004 | 0.060 | 0.066 | CqCHX-18-CqCHX-41 | 0.119 | 0.527 | 0.225 |
| CqCHX-7-CqCHX-30 | 0.021 | 0.171 | 0.126 | CqCHX-19-CqCHX-34 | 0.015 | 0.193 | 0.080 |
| CqCHX-8-CqCHX-29 | 0.032 | 0.159 | 0.203 | CqCHX-21-CqCHX-50 | 0.085 | 0.151 | 0.566 |
| CqCHX-9-CqCHX-28 | 0.018 | 0.163 | 0.112 | CqCHX-24-CqCHX-25 | 0.076 | 0.515 | 0.148 |
| CqCHX-14-CqCHX-45 | 0.012 | 0.169 | 0.073 | CqCHX-24-CqCHX-41 | 0.096 | 0.464 | 0.207 |
| CqCHX-15-CqCHX-44 | 0.012 | 0.116 | 0.106 | CqCHX-24-CqCHX-26 | 0.116 | 0.583 | 0.200 |
| CqCHX-16-CqCHX-24 | 0.028 | 0.122 | 0.230 | CqCHX-25-CqCHX-41 | 0.047 | 0.323 | 0.146 |
| CqCHX-16-CqCHX-25 | 0.080 | 0.520 | 0.154 | CqCHX-25-CqCHX-26 | 0.103 | 0.600 | 0.172 |
| CqCHX-16-CqCHX-41 | 0.101 | 0.483 | 0.210 | CqCHX-26-CqCHX-41 | 0.115 | 0.599 | 0.192 |
| CqCHX-17-CqCHX-25 | 0.030 | 0.198 | 0.153 | CqCHX-39-CqCHX-40 | 0.022 | 0.144 | 0.151 |
| CqCHX-17-CqCHX-41 | 0.064 | 0.333 | 0.191 |
表2 藜麦中CHX基因家族基因复制分析
Table 2 Gene duplication analysis of CHX gene family in quinoa
重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks | 重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks |
|---|---|---|---|---|---|---|---|
| CqCHX-1-CqCHX-11 | 0.015 | 0.106 | 0.140 | CqCHX-17-CqCHX-24 | 0.092 | 0.471 | 0.196 |
| CqCHX-2-CqCHX-33 | 0.143 | 0.781 | 0.183 | CqCHX-17-CqCHX-26 | 0.111 | 0.615 | 0.181 |
| CqCHX-4-CqCHX-13 | 0.057 | 0.182 | 0.316 | CqCHX-18-CqCHX-26 | 0.032 | 0.166 | 0.191 |
| CqCHX-4-CqCHX-5 | 0.111 | 0.296 | 0.376 | CqCHX-18-CqCHX-25 | 0.104 | 0.610 | 0.170 |
| CqCHX-6-CqCHX-22 | 0.004 | 0.060 | 0.066 | CqCHX-18-CqCHX-41 | 0.119 | 0.527 | 0.225 |
| CqCHX-7-CqCHX-30 | 0.021 | 0.171 | 0.126 | CqCHX-19-CqCHX-34 | 0.015 | 0.193 | 0.080 |
| CqCHX-8-CqCHX-29 | 0.032 | 0.159 | 0.203 | CqCHX-21-CqCHX-50 | 0.085 | 0.151 | 0.566 |
| CqCHX-9-CqCHX-28 | 0.018 | 0.163 | 0.112 | CqCHX-24-CqCHX-25 | 0.076 | 0.515 | 0.148 |
| CqCHX-14-CqCHX-45 | 0.012 | 0.169 | 0.073 | CqCHX-24-CqCHX-41 | 0.096 | 0.464 | 0.207 |
| CqCHX-15-CqCHX-44 | 0.012 | 0.116 | 0.106 | CqCHX-24-CqCHX-26 | 0.116 | 0.583 | 0.200 |
| CqCHX-16-CqCHX-24 | 0.028 | 0.122 | 0.230 | CqCHX-25-CqCHX-41 | 0.047 | 0.323 | 0.146 |
| CqCHX-16-CqCHX-25 | 0.080 | 0.520 | 0.154 | CqCHX-25-CqCHX-26 | 0.103 | 0.600 | 0.172 |
| CqCHX-16-CqCHX-41 | 0.101 | 0.483 | 0.210 | CqCHX-26-CqCHX-41 | 0.115 | 0.599 | 0.192 |
| CqCHX-17-CqCHX-25 | 0.030 | 0.198 | 0.153 | CqCHX-39-CqCHX-40 | 0.022 | 0.144 | 0.151 |
| CqCHX-17-CqCHX-41 | 0.064 | 0.333 | 0.191 |
图3 藜麦CHX基因家族的启动子顺式作用元件分析(A)和蛋白质相互作用网络预测(B)
Fig. 3 Promoter cis-acting element analysis (A) and protein interaction network prediction (B) of the CHX gene family in quinoa
图5 盐碱胁迫(A)和盐碱胁迫+NO(B)处理下藜麦CHX基因表达模式分析不同小写字母表示P<0.05水平下显著性
Fig. 5 Analysis of CHX gene expression patterns in quinoa under saline-alkali stress (A) and saline-alkali stress+ NO (B) treatmentDifferent lowercase letters indicate the significance at P<0.05 level
| 1 | 李霞, 刘传鑫, 徐彬, 等. 植物拒盐机制的研究进展 [J]. 中国农学通报, 2023, 39(27): 86-94. |
| Li X, Liu CX, Xu B, et al. Plant salt-exclusion mechanism: a review [J]. Chin Agric Sci Bull, 2023, 39(27): 86-94. | |
| 2 | Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? [J]. J Exp Bot, 2014, 65(12): 2963-2979. |
| 3 | Sewelam N, Oshima Y, Mitsuda N, et al. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study [J]. Plant Cell Environ, 2014, 37(9): 2024-2035. |
| 4 | Teakle NL, Tyerman SD. Mechanisms of Cl- transport contributing to salt tolerance [J]. Plant Cell Environ, 2010, 33(4): 566-589. |
| 5 | Chanroj S, Wang GY, Venema K, et al. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants [J]. Front Plant Sci, 2012, 3: 25. |
| 6 | 刘斌, 周子豪, 杨正利, 等. 茶树CHX基因家族全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2023. . |
| Liu B, Zhou ZH, Yang ZL, et al. Genome-wide identification of CHX gene family in tea plant (Camellia sinensis) and bioinformatics analysi[J]. Mol Plant Breed, 2023. . | |
| 7 | Padmanaban S, Chanroj S, Kwak JM, et al. Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells [J]. Plant Physiol, 2007, 144(1): 82-93. |
| 8 | Jia Q, Zheng C, Sun S, et al. The role of plant cation/proton antiporter gene family in salt tolerance [J]. Biol Plant, 2018, 62(4): 617-629. |
| 9 | Guan RX, Qu Y, Guo Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3 [J]. Plant J, 2014, 80(6): 937-950. |
| 10 | Qi XP, Li MW, Xie M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing [J]. Nat Commun, 2014, 5: 4340. |
| 11 | Ren SX, Lyle C, Jiang GL, et al. Soybean salt tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana [J]. Front Plant Sci, 2016, 7: 445. |
| 12 | Jia BW, Sun MZ, DuanMu HZ, et al. GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance [J]. Sci Rep, 2017, 7(1): 9423. |
| 13 | Qu Y, Guan RX, Bose J, et al. GmSALT3 confers shoot Na+ and Cl- exclusion in soybean via two distinct processes [J]. bioRxiv, 2020. DOI: 10.1101/2020.01.06.896456 . |
| 14 | Isayenkov SV, Maathuis FJM. Plant salinity stress: many unanswered questions remain [J]. Front Plant Sci, 2019, 10: 80. |
| 15 | Hall D, Evans AR, Newbury HJ, et al. Functional analysis of CHX21: a putative sodium transporter in Arabidopsis [J]. J Exp Bot, 2006, 57(5): 1201-1210. |
| 16 | Isayenkov SV, Dabravolski SA, Pan T, et al. Phylogenetic diversity and physiological roles of plant monovalent cation/H+ antiporters [J]. Front Plant Sci, 2020, 11: 573564. |
| 17 | Guo YQ, Zhu CR, Tian ZY. Overexpression of KvCHX enhances salt tolerance in Arabidopsis thaliana seedlings [J]. Curr Issues Mol Biol, 2023, 45(12): 9692-9708. |
| 18 | 杨发荣, 黄杰, 魏玉明, 等. 藜麦生物学特性及应用 [J]. 草业科学, 2017, 34(3): 607-613. |
| Yang FR, Huang J, Wei YM, et al. A review of biological characteristics, applications, and culture of Chenopodium quinoa [J]. Pratacultural Sci, 2017, 34(3): 607-613. | |
| 19 | Vilcacundo R, Hernández-Ledesma B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.) [J]. Curr Opin Food Sci, 2017, 14: 1-6. |
| 20 | 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响 [J]. 干旱区资源与环境, 2022, 36(5): 146-152. |
| Wang YZ, Ding GD, Cui XR, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes [J]. J Arid Land Resour Environ, 2022, 36(5): 146-152. | |
| 21 | Jarvis DE, Ho YS, Lightfoot DJ, et al. The genome of Chenopodium quinoa [J]. Nature, 2017, 542(7641): 307-312. |
| 22 | 彭悦, 丁洪霞, 杨博, 等. 藜麦CqNHX基因家族表达与耐盐相关性分析[J/OL]. 分子植物育种, 2023. . |
| Peng Y, Ding HX, Yang B, et al. Identification and expression analysis of CqNHX gene family in quinoa under salt stress [J/OL]. Mol Plant Breed, 2023. . | |
| 23 | 褚晶. 藜麦GST基因家族的鉴定与表达分析及发根农杆菌介导的GST基因功能研究 [D]. 烟台: 烟台大学, 2022. |
| Chu J. Identification and expression analysis of GST gene family in quinoa and study on GST gene function mediated by Agrobacterium rhizogenes [D]. Yantai: Yantai University, 2022. | |
| 24 | Zhu XL, Wang BQ, Wei XH. Identification and expression analysis of the CqSnRK2 gene family and a functional study of the CqSnRK2.12 gene in quinoa (Chenopodium quinoa Willd.) [J]. BMC Genomics, 2022, 23(1): 397. |
| 25 | Sze H, Padmanaban S, Cellier F, et al. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development [J]. Plant Physiol, 2004, 136(1): 2532-2547. |
| 26 | 贾博为, 金军, 庄齐, 等. 玉米CHX基因家族全基因组鉴定与表达分析 [J]. 黑龙江八一农垦大学学报, 2022, 34(4): 23-30, 64. |
| Jia BW, Jin J, Zhuang Q, et al. Genome-wide identification and expression analysis of maize CHX family [J]. J Heilongjiang Bayi Agric Univ, 2022, 34(4): 23-30, 64. | |
| 27 | 才晓溪, 沈阳, 周伍红, 等. 大豆CHX基因家族全基因组鉴定与生物信息学分析 [J]. 基因组学与应用生物学, 2018, 37(12): 5360-5369. |
| Cai XX, Shen Y, Zhou WH, et al. Genome-wide identification and bioinformatics analysis of soybean CHX gene family [J]. China Ind Econ, 2018, 37(12): 5360-5369. | |
| 28 | Abdullah, Faraji S, Mehmood F, et al. The GASA gene family in cacao (Theobroma cacao, Malvaceae): genome wide identification and expression analysis [J]. Agronomy, 2021, 11(7): 1425. |
| 29 | Musavizadeh Z, Najafi-Zarrini H, Kazemitabar SK, et al. Genome-wide analysis of Potassium channel genes in rice: expression of the OsAKT and OsKAT genes under salt stress [J]. Genes, 2021, 12(5): 784. |
| 30 | Heidari P, Faraji S, Ahmadizadeh M, et al. New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: a genome-wide comprehensive analysis [J]. Front Genet, 2021, 12: 657970. |
| 31 | Faraji S, Heidari P, Amouei H, et al. Investigation and computational analysis of the sulfotransferase (SOT) gene family in potato (Solanum tuberosum): insights into sulfur adjustment for proper development and stimuli responses [J]. Plants, 2021, 10(12): 2597. |
| 32 | 吴彤, 刘云苗, 金军, 等. 蒺藜苜蓿cation/H+ exchanger基因家族鉴定及表达特征分析 [J]. 草业学报, 2022, 31(1): 181-194. |
| Wu T, Liu YM, Jin J, et al. Identification and expression characteristics of a cation/H+ exchanger gene family in Medicago truncatula [J]. Acta Prataculturae Sin, 2022, 31(1): 181-194. | |
| 33 | Pardo JM, Cubero B, Leidi EO, et al. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance [J]. J Exp Bot, 2006, 57(5): 1181-1199. |
| 34 | Haro R, Fraile-Escanciano A, González-Melendi P, et al. The potassium transporters HAK2 and HAK3 localize to endomembranes in Physcomitrella patens. HAK2 is required in some stress conditions [J]. Plant Cell Physiol, 2013, 54(9): 1441-1454. |
| 35 | Sze H, Chanroj S. Plant endomembrane dynamics: studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis [J]. Plant Physiol, 2018, 177(3): 875-895. |
| 36 | Song CP, Guo Y, Qiu QS, et al. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A, 2004, 101(27): 10211-10216. |
| [1] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
| [2] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
| [3] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
| [4] | 何财林, 卢晶, 郭会会, 李小安, 吴琪. 藜麦MADS-box基因家族的全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(1): 157-172. |
| [5] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [6] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
| [7] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
| [8] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
| [9] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
| [10] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
| [11] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
| [12] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
| [13] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
| [14] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
| [15] | 林彤, 袁程, 董陈文华, 曾孟琼, 杨燕, 毛自朝, 林春. 藜麦配子发育相关基因CqSTK的筛选及功能分析[J]. 生物技术通报, 2024, 40(8): 83-94. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||