生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 132-142.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0569
杜品廷1(), 吴国江1, 王振国2, 李岩2, 周伟1(
), 周亚星1(
)
收稿日期:
2024-06-14
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
周伟,男,博士,副教授,研究方向:作物遗传育种;E-mail: 18747341033@163.com;作者简介:
杜品廷,男,硕士,研究方向:作物遗传改良与种质创新;E-mail: 2026024967@qq.com
基金资助:
DU Pin-ting1(), WU Guo-jiang1, WANG Zhen-guo2, LI Yan2, ZHOU Wei1(
), ZHOU Ya-xing1(
)
Received:
2024-06-14
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】CPP基因家族在真核生物中广泛存在,对植物的生长发育起到重要的作用。从高粱基因组中鉴定CPP基因家族成员并分析其表达特征,为高粱CPP基因家族功能研究及遗传改良提供理论依据。【方法】通过生物信息学技术的方法对高粱CPP基因家族进行序列分析,并联合转录组和RT-qPCR技术分析SbCPP在高粱不同组织及盐碱胁迫下的表达情况。【结果】高粱中共鉴定到8个SbCPP基因,不均匀地分布在7条染色体上,家族各成员间具有相似的基因结构及蛋白理化性质;结合进化树分析与共线性分析结果表明,SbCPP基因与水稻存在密切亲缘关系,且共存在6对同源基因;启动子分析发现,SbCPP基因启动子含有光响应、激素响应、应激响应等元件。转录组数据分析结果表明,SbCPP基因可能参与高粱响应盐碱胁迫的调控过程。通过实时荧光定量PCR发现,SbCPP基因在高粱盐碱胁迫中广泛表达,但家族成员在不同时期中的表达模式存在差异,SbCPP01、SbCPP04在12 h表达较高,SbCPP02在6 h表达较高,SbCPP03在1 h表达量较高,上述基因表达显著。【结论】在高粱中获得了8个CPP基因,其中SbCPP01、SbCPP02、SbCPP04基因在盐碱胁迫处理下呈现高表达,表明这些基因在高粱抵御盐碱胁迫中发挥重要作用。
杜品廷, 吴国江, 王振国, 李岩, 周伟, 周亚星. 高粱CPP基因家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 132-142.
DU Pin-ting, WU Guo-jiang, WANG Zhen-guo, LI Yan, ZHOU Wei, ZHOU Ya-xing. Identification and Expression Analysis of CPP Gene Family in Sorghum[J]. Biotechnology Bulletin, 2025, 41(1): 132-142.
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
GAPDH | CCTGTACCGTCCCTCGACTT | ATGCTTGCACCCTGTACTGC |
SbCPP01 | CAAGAACTACGAAGGGAGTGAGGAG | GGCACCATTCAGAGCAACATTAGC |
SbCPP02 | TGCTTCGCTTCTGGTACTCACTG | TCACGCCTGGCAACCTCATTC |
SbCPP03 | CCAACAAGAGGAACAGCAATGACAG | AGGATCTGGACGCACTTCGATATG |
SbCPP04 | ACAGGAAGAGGAGGAGGAAGGC | AGGTTCGCATCCACATGACTCAG |
SbCPP05 | CACCAAACAAGAAGCGAATCTCTCC | CCACCAAGGGAAGGGAAAGAAGG |
SbCPP06 | GGCTTCCATTGGTCTGAAACTTCG | TTAGTGCTTGTGTTGTTGGAGATGC |
SbCPP07 | CGCAAGCAGACTGAATCTCGTAAC | CGGAAGCAGGAGTGTTGTTAGAATC |
SbCPP08 | GTTCTCTCCACTCGGAAGCAGATAG | TTCCAGACCAGCATCAGACATACG |
表1 高粱CPP基因家族表达分析的实时荧光定量引物
Table 1 RT-qPCR primers for the expression analysis of CPP gene family in sorghum
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
GAPDH | CCTGTACCGTCCCTCGACTT | ATGCTTGCACCCTGTACTGC |
SbCPP01 | CAAGAACTACGAAGGGAGTGAGGAG | GGCACCATTCAGAGCAACATTAGC |
SbCPP02 | TGCTTCGCTTCTGGTACTCACTG | TCACGCCTGGCAACCTCATTC |
SbCPP03 | CCAACAAGAGGAACAGCAATGACAG | AGGATCTGGACGCACTTCGATATG |
SbCPP04 | ACAGGAAGAGGAGGAGGAAGGC | AGGTTCGCATCCACATGACTCAG |
SbCPP05 | CACCAAACAAGAAGCGAATCTCTCC | CCACCAAGGGAAGGGAAAGAAGG |
SbCPP06 | GGCTTCCATTGGTCTGAAACTTCG | TTAGTGCTTGTGTTGTTGGAGATGC |
SbCPP07 | CGCAAGCAGACTGAATCTCGTAAC | CGGAAGCAGGAGTGTTGTTAGAATC |
SbCPP08 | GTTCTCTCCACTCGGAAGCAGATAG | TTCCAGACCAGCATCAGACATACG |
基因 Gene | 基因号 Gene ID | 氨基酸数目Number of amino acids/aa | 分子量Molecular weight/kD | 等电点pI | 不稳定性系数Instability index | 脂肪系数Aliphatic index | 亲水性平均值Grand average of hydropathicity | 亚细胞定位预测 Prediction of subcellular location |
---|---|---|---|---|---|---|---|---|
SbCPP01 | Sobic.010G147000.v3.2 | 509 | 56 257.23 | 7.11 | 51.64 | 64.24 | -0.758 | 细胞核 Nucleus |
SbCPP02 | Sobic.003G303800.v3.2 | 613 | 67 297.16 | 8.84 | 57.48 | 62.07 | -0.747 | 细胞核 Nucleus |
SbCPP03 | Sobic.009G191600.v3.2 | 359 | 40 038.23 | 8.5 | 52.7 | 56.55 | -0.735 | 细胞核 Nucleus |
SbCPP04 | Sobic.008G160500.v3.2 | 409 | 44 239.48 | 6.82 | 80.47 | 64.72 | -0.543 | 细胞核 Nucleus |
SbCPP05 | Sobic.008G160600.v3.2 | 767 | 82 644.05 | 6.54 | 59.91 | 66.4 | -0.579 | 细胞核 Nucleus |
SbCPP06 | Sobic.004G124300.v3.2 | 543 | 59 446.12 | 7.17 | 58.52 | 53.22 | -0.779 | 细胞核 Nucleus |
SbCPP07 | Sobic.001G159500.v3.2 | 747 | 81 124.88 | 8.1 | 54.62 | 68.3 | -0.579 | 细胞核 Nucleus |
SbCPP08 | Sobic.002G050700.v3.2 | 776 | 83 360.06 | 6.04 | 53.58 | 64.86 | -0.599 | 细胞核 Nucleus |
表2 高粱8个CPP基因家族成员的理化性质
Table 2 Physicochemical characteristics of 8 members of the CPP gene family in sorghum
基因 Gene | 基因号 Gene ID | 氨基酸数目Number of amino acids/aa | 分子量Molecular weight/kD | 等电点pI | 不稳定性系数Instability index | 脂肪系数Aliphatic index | 亲水性平均值Grand average of hydropathicity | 亚细胞定位预测 Prediction of subcellular location |
---|---|---|---|---|---|---|---|---|
SbCPP01 | Sobic.010G147000.v3.2 | 509 | 56 257.23 | 7.11 | 51.64 | 64.24 | -0.758 | 细胞核 Nucleus |
SbCPP02 | Sobic.003G303800.v3.2 | 613 | 67 297.16 | 8.84 | 57.48 | 62.07 | -0.747 | 细胞核 Nucleus |
SbCPP03 | Sobic.009G191600.v3.2 | 359 | 40 038.23 | 8.5 | 52.7 | 56.55 | -0.735 | 细胞核 Nucleus |
SbCPP04 | Sobic.008G160500.v3.2 | 409 | 44 239.48 | 6.82 | 80.47 | 64.72 | -0.543 | 细胞核 Nucleus |
SbCPP05 | Sobic.008G160600.v3.2 | 767 | 82 644.05 | 6.54 | 59.91 | 66.4 | -0.579 | 细胞核 Nucleus |
SbCPP06 | Sobic.004G124300.v3.2 | 543 | 59 446.12 | 7.17 | 58.52 | 53.22 | -0.779 | 细胞核 Nucleus |
SbCPP07 | Sobic.001G159500.v3.2 | 747 | 81 124.88 | 8.1 | 54.62 | 68.3 | -0.579 | 细胞核 Nucleus |
SbCPP08 | Sobic.002G050700.v3.2 | 776 | 83 360.06 | 6.04 | 53.58 | 64.86 | -0.599 | 细胞核 Nucleus |
蛋白Protein | α-螺旋α-helix/% | 延长链 Extended strand/% | β-转角β-turn/% | 无规则卷曲Random coil/% |
---|---|---|---|---|
SbCPP01 | 27.11 | 6.48 | 3.34 | 63.06 |
SbCPP02 | 27.41 | 5.38 | 3.92 | 63.30 |
SbCPP03 | 21.17 | 9.75 | 3.62 | 65.46 |
SbCPP04 | 19.56 | 11.00 | 3.67 | 65.77 |
SbCPP05 | 16.95 | 9.91 | 1.96 | 71.19 |
SbCPP06 | 26.15 | 5.34 | 3.50 | 65.01 |
SbCPP07 | 18.74 | 9.64 | 2.41 | 69.21 |
SbCPP08 | 21.13 | 6.70 | 2.45 | 69.72 |
表3 高粱CPP家族二级蛋白结构预测
Table 3 Prediction of secondary protein structure of sorghum CPP family
蛋白Protein | α-螺旋α-helix/% | 延长链 Extended strand/% | β-转角β-turn/% | 无规则卷曲Random coil/% |
---|---|---|---|---|
SbCPP01 | 27.11 | 6.48 | 3.34 | 63.06 |
SbCPP02 | 27.41 | 5.38 | 3.92 | 63.30 |
SbCPP03 | 21.17 | 9.75 | 3.62 | 65.46 |
SbCPP04 | 19.56 | 11.00 | 3.67 | 65.77 |
SbCPP05 | 16.95 | 9.91 | 1.96 | 71.19 |
SbCPP06 | 26.15 | 5.34 | 3.50 | 65.01 |
SbCPP07 | 18.74 | 9.64 | 2.41 | 69.21 |
SbCPP08 | 21.13 | 6.70 | 2.45 | 69.72 |
图2 高粱、拟南芥和水稻基因家族的系统进化树 Sb:高粱;Os:水稻;At:拟南芥
Fig. 2 Phylogenetic tree of gene families in sorghum, Ara-bidopsis, and rice Sb: Sorghum; Os: rice; At: Arabidopsis
图3 高粱CPP基因家族保守基序与基因结构分析 A:SbCPP家族成员系统进化树;B:SbCPP家族成员保守基序图;C:SbCPP家族成员基因结构图
Fig. 3 Conservative motifs and gene structure analysis of the CPP gene family in sorghum members A: Phylogenetic tree of SbCPP family members. B: Mapping of conserved motifs for SbCPP family members. C: Mapping of gene structure for SbCPP family
图6 高粱CPP基因组织表达模式 1:幼叶;2:幼根;3:幼茎;4:芽;5:穗花芽分化;6:花序梗花芽分化;7:种子;8:幼嫩根尖
Fig. 6 Analysis of tissue expression of CPP gene in sorghum 1: Young leaves. 2: Young roots. 3: Young stem. 4: Bud. 5: Panicle floral initiation. 6: Peduncle loral initiation.7: Seed. 8: Root top juvenile
图7 高粱CPP基因不同材料表达模式分析 M:盐碱敏感材料T501;N:耐盐碱材料T84:CK,2,4分别代表对照,胁迫2 d,4 d
Fig. 7 Analysis of expression patterns of CPP gene in different materials of sorghum M: Saline-alkali sensitive material T501, N: saline-alkali resistant material T84, CK, 2,4 refers to control, stress 2 d, and 4 d, respectively
图8 高粱CPP基因家族盐碱胁迫表达模式 数据为3个独立生物学重复的平均值(±SE)。柱状图上方的不同字母表示 P<0.05 时显著差异
Fig. 8 Salt alkali stress expression patterns of the CPP gene family in sorghum Data are the mean of 3 independent biological replicates(±SE). Different letters above the bar chart indicate significant differences at P<0.05
[1] |
李顺国, 刘猛, 刘斐, 等. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
Li SG, Liu M, Liu F, et al. Current status and future prospective of sorghum production and seed industry in China[J]. Sci Agric Sin, 2021, 54(3): 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
|
[2] |
罗洪, 张丽敏, 夏艳, 等. 能源植物高粱基因组研究进展[J]. 科技导报, 2015, 33(16): 17-26.
doi: 10.3981/j.issn.1000-7857.2015.16.002 |
Luo H, Zhang LM, Xia Y, et al. An update ongenome research of biofuel sorghum(Sorghum bicolour)[J]. Sci Technol Rev, 2015, 33(16): 17-26. | |
[3] | Kim M, Day DF. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar Mills[J]. J Ind Microbiol Biotechnol, 2011, 38(7): 803-807. |
[4] | Yang Z, Li JL, Liu LN, et al. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum[J]. Front Plant Sci, 2020, 10: 1722. |
[5] |
吴国江, 周伟, 李艳肖, 等. 高粱ZF-HD基因家族鉴定与盐碱胁迫下的表达分析[J]. 浙江农业学报, 2024, 36(6): 1217-1231.
doi: 10.3969/j.issn.1004-1524.20230861 |
Wu GJ, Zhou W, Li YX, et al. Identification and expression analysis under saline-alkali stress of ZF-HD gene family in sorghum[J]. Acta Agric Zhejiangensis, 2024, 36(6): 1217-1231.
doi: 10.3969/j.issn.1004-1524.20230861 |
|
[6] | 吴慧琳. 高粱全基因组测序的完成揭示了未被发现的宝贵遗传资源[J]. 农业生物技术学报, 2013, 21(11): 1278. |
Wu HL. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum[J]. J Agric Biotechnol, 2013, 21(11): 1278. | |
[7] | 王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806. |
Wang B, Chen MD, Lin L, et al. Signal pathways and related transcription factors of drought stress in plants[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(10): 1792-1806. | |
[8] | 赵才美, 黄兴奇, 殷富有, 等. 水稻NAC转录因子家族的研究进展[J]. 植物科学学报, 2020, 38(2): 278-287. |
Zhao CM, Huang XQ, Yin FY, et al. Research progress on NAC transcription factor family in Oryza sativa L[J]. Plant Sci J, 2020, 38(2): 278-287. | |
[9] | Yang ZF, Gu SL, Wang XF, et al. Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice[J]. J Mol Evol, 2008, 67(3): 266-277. |
[10] | 王凯. 拟南芥和水稻CPP转录因子家族的生物信息学分析[J]. 生物技术通报, 2010, 26(2): 76-84. |
Wang K. Bioinformatic analysis of the CPP transcription factors family in Arabidopsis and rice[J]. Biotechnol Bull, 2010, 26(2): 76-84. | |
[11] | Lu T, Dou YC, Zhang C. Fuzzy clustering of CPP family in plants with evolution and interaction analyses[J]. BMC Bioinformatics, 2013, 14(Suppl 13): S10. |
[12] | Song XY, Zhang YY, Wu FC, et al. Genome-wide analysis of the maize(Zea may L.)CPP-like gene family and expression profiling under abiotic stress[J]. Genet Mol Res, 2016, 15(3). DOI: 10.4238/gmr.15038023. |
[13] | Zhou Y, Hu LF, Ye SF, et al. Genome-wide identification and characterization of cysteine-rich polycomb-like protein(CPP)family genes in cucumber(Cucumis sativus)and their roles in stress responses[J]. Biologia, 2018, 73(4): 425-435. |
[14] | 杨如兴, 王鹏杰, 陈芝芝, 等. 茶树CPP转录因子家族的全基因组鉴定及分析[J]. 西北植物学报, 2019, 39(6): 1024-1032. |
Yang RX, Wang PJ, Chen ZZ, et al. Genome-wide identification and analysis of CPP transcription factor family in tea plants[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(6): 1024-1032. | |
[15] |
Hauser BA, He JQ, Park SO, et al. TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis[J]. Development, 2000, 127(10): 2219-2226.
doi: 10.1242/dev.127.10.2219 pmid: 10769245 |
[16] | Sijacic P, Wang WP, Liu ZC. Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems[J]. PLoS Genet, 2011, 7(11): e1002352. |
[17] |
Cvitanich C, Pallisgaard N, Nielsen KA, et al. CPP1 a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene[J]. Proc Natl Acad Sci USA, 2000, 97(14): 8163-8168.
doi: 10.1073/pnas.090468497 pmid: 10859345 |
[18] |
田骄阳, 王秋霞, 郑淑文, 等. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析[J]. 草业学报, 2022, 31(7): 111-121.
doi: 10.11686/cyxb2021215 |
Tian JY, Wang QX, Zheng SW, et al. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula[J]. Acta Prataculturae Sin, 2022, 31(7): 111-121. | |
[19] | 罗巍. 甜高粱种质资源耐苏打盐碱性鉴定及机制分析[D]. 通辽: 内蒙古民族大学, 2023. |
Luo W. Identification and mechanism analysis of alkalinity tolerance of sweet sorghum germplasm resources to soda salt[D]. Tongliao: Inner Mongolia University for the Nationalities, 2023. | |
[20] | 黄静, 郑晶, 胡乐佳, 等. 陆地棉CPP转录因子家族全基因组鉴定及分析[J]. 分子植物育种, 2022, 20(14): 4556-4566. |
Huang J, Zheng J, Hu LJ, et al. Genome-wide identification and analysis of CPP transcription factor family in Gossypium hirsutum L[J]. Mol Plant Breed, 2022, 20(14): 4556-4566. | |
[21] | 杨楠, 孙瑞青, 孙宇, 等. 杧果CPP转录因子家族基因的鉴定及表达分析[J]. 植物遗传资源学报, 2021, 22(5): 1452-1462. |
Yang N, Sun RQ, Sun Y, et al. Identification and expression analysis of CPP transcription factor family genes in mango[J]. J Plant Genet Resour, 2021, 22(5): 1452-1462. | |
[22] |
崔江慧, 杨溥原, 常金华. 高粱GRF基因家族鉴定及在非生物胁迫下的表达分析[J]. 中国农业科技导报, 2021, 23(4): 37-46.
doi: 10.13304/j.nykjdb.2020.0278 |
Cui JH, Yang PY, Chang JH. Identification and expression analysis under abiotic stress of GRF gene family in sorghum[J]. J Agric Sci Technol, 2021, 23(4): 37-46. | |
[23] | 吴金丽, 汤泽洋, 鲁鑫, 等. 玉米PDI基因家族鉴定和表达模式分析[J]. 植物遗传资源学报, 2024, 25(1): 97-110. |
Wu JL, Tang ZY, Lu X, et al. Identification and expression pattern analysis of PDI gene family in maize[J]. J Plant Genet Resour, 2024, 25(1): 97-110. | |
[24] | 刘晓龙, 徐晨, 邵勤, 等. 脱落酸提高水稻抗逆性的研究进展[J]. 东北农业科学, 2022, 47(6): 29-33. |
Liu XL, Xu C, Shao Q, et al. Research progress of abscisic acid in improving rice stress resistance[J]. J Northeast Agric Sci, 2022, 47(6): 29-33. | |
[25] | 罗丽娟. 环境因子对柑橘柠檬酸积累及其相关基因的影响[D]. 武汉: 华中农业大学, 2019. |
Luo LJ. Effects of environmental factors on citric acid accumulation and related genes in Citrus[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[26] | 杨平, 蔡芸菲, 孙悦, 等. 生长素引发对盐胁迫下棉花生长发育及产量品质的影响[J]. 分子植物育种, 2023, 21(20): 6851-6859. |
Yang P, Cai YF, Sun Y, et al. Effects of auxin priming treatment on cotton growth, yield and quality under salt stress[J]. Mol Plant Breed, 2023, 21(20): 6851-6859. | |
[27] | 牛佳斌, 唐凯, 夏迎萌, 等. 辣椒NRT基因家族的系统鉴定、进化与表达分析[J]. 南京农业大学学报, 2024, 47(4): 653-664. |
Niu JB, Tang K, Xia YM, et al. Systematic identification, evolution and expression analysis of NRT gene family in pepper[J]. J Nanjing Agric Univ, 2024, 47(4): 653-664. | |
[28] | 刘涛涛, 李薇, 冯甜甜, 等. 小麦CPP基因家族鉴定和TaCPP20-5B克隆分析[J]. 分子植物育种, 2023, 21(17): 5569-5575. |
Liu TT, Li W, Feng TT, et al. Identification of the CPP gene family and TaCPP20-5B cloning analysis in wheat[J]. Mol Plant Breed, 2023, 21(17): 5569-5575. |
[1] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[2] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[3] | 谭博文, 张懿, 张鹏, 王振宇, 马秋香. 木薯镁离子转运蛋白家族基因的鉴定及生物信息学分析[J]. 生物技术通报, 2024, 40(9): 20-32. |
[4] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[5] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[6] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[7] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[8] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[9] | 周麟, 黄顺满, 苏文坤, 姚响, 屈燕. 滇山茶bHLH基因家族鉴定及花色形成相关基因筛选[J]. 生物技术通报, 2024, 40(8): 142-151. |
[10] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[11] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[12] | 王健, 杨莎, 孙庆文, 陈宏宇, 杨涛, 黄园. 金钗石斛bHLH转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(6): 203-218. |
[13] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
[14] | 胡永波, 雷雨田, 杨永森, 陈馨, 林黄昉, 林碧英, 刘爽, 毕格, 申宝营. 黄瓜和南瓜Bcl-2相关抗凋亡家族全基因组鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(6): 219-237. |
[15] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||