生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 310-318.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1225
李梦然1,2(), 叶伟2, 李赛妮2, 张维阳2, 李建军1(), 章卫民2()
收稿日期:
2023-12-29
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
章卫民,男,博士,研究员,研究方向 :微生物活性代谢产物及其功能基因 ;E-mail: wmzhang@gdim.cn;作者简介:
李梦然,女,硕士研究生,研究方向:基础兽医;E-mail: 1871288385@qq.com
基金资助:
LI Meng-ran1,2(), YE Wei2, LI Sai-ni2, ZHANG Wei-yang2, LI Jian-jun1(), ZHANG Wei-min2()
Received:
2023-12-29
Published:
2024-06-26
Online:
2024-06-24
摘要:
【目的】 Lithocarols为新型的多异戊烯基二苯甲酮类化合物,具有良好的抗肿瘤活性。对lithocarols生物合成基因litI进行克隆和表达纯化,并对该基因的启动子进行功能鉴定,为lithocarols的生物合成及转录调控奠定分子生物学基础。【方法】 将litI基因扩增后进行原核表达,采用镍亲和层析初步纯化目的蛋白LitI,利用生物信息学方法分析该蛋白的性质和结构。同时扩增litI基因启动子片段,构建荧光素酶表达系统,分析启动子的转录活性,利用PlantCARE启动子分析网站对litI基因启动子的功能组件进行预测。【结果】 LitI蛋白为亲水性蛋白,其相对分子量为51 kD,二级结构包括51.32%的α-螺旋、8.99%的延伸链、3.95%的β-转角以及35.75%无规则卷曲。litI基因启动子具有较强的转录活性且在大肠杆菌中具有启动氨苄青霉素抗性基因表达的功能,其功能组件包含TATA box和CAAT box。【结论】 通过异源表达获得了LitI蛋白,分析了其性质和结构,并鉴定了具有较强转录活性的litI基因启动子片段。
李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318.
LI Meng-ran, YE Wei, LI Sai-ni, ZHANG Wei-yang, LI Jian-jun, ZHANG Wei-min. Expression of Lithocarols Biosynthesis Gene litI and Functional Analysis of Its Promoter[J]. Biotechnology Bulletin, 2024, 40(6): 310-318.
图2 基因litI的PCR验证 A:基因litI的克隆,M:DL5000 DNA marker;I:基因litI。B:菌液PCR验证,M:DL5000 DNA marker;I1-5:pET-30a-litI阳性单克隆
Fig. 2 PCR verification of gene litI A: Cloning of gene litI, M: DL5000 DNA marker; I: gene litI. B: PCR verification of bacterial liquid, M: DL5000 DNA marke; I1-5: positive colonies of pET-30a-litI
图3 蛋白LitI的初步纯化 A:蛋白LitI表达条件的优化,M:Blue Plus II protein marker(14-100 kD);1、3、5、6:条件①、③、②、④的上清;2、4、7、8:条件①、③、②、④的沉淀。B:蛋白LitI的初步纯化,M: protein marker(14-100 kD);1:穿过液;2:10%咪唑洗脱液
Fig. 3 Preliminary purification of protein LitI A: Optimization of protein LitI expression conditions. M: Blue Plus II protein marker(14-100 kD); 1, 3, 5 and 6: supernatant for ①, ③, ② and ④; 2, 4, 7 and 8: sediment for ①, ③, ② and ④. B: Preliminary purification of protein LitI, M: protein marker; 1: binding buffer; 2: 10% imidazole eluent
图4 LitI蛋白的生物信息学分析 A:蛋白LitI的亲水性/疏水性分析;B:LitI蛋白的二级结构分析;C:LitI蛋白三级结构预测同源建模
Fig.4 Bioinformatics analysis of LitI protein A: Hydrophilicity/hydrophobicity analysis of protein LitI. B: Secondary structure analysis of protein LitI. C: Homology modeling for tertiary structure prediction of protein LitI
图5 pGL3-basic-启动子重组载体的构建及其转录活性分析 A:litI启动子片段的克隆,M:DL5000 DNA marker;I-1,I-2:PCR扩增得到的启动子片段;B:含 pGL3-basic-litI启动子的菌落PCR 验证,M:DL5000 DNA marker;1-5:含I-1启动子的菌落PCR验证;6-10:含I-2启动子的菌落PCR验证;C:pGL3-basic-空载/pgpd/litI 启动子载体的荧光强度分析
Fig. 5 Construction of pGL3-basic-promoter recombinant vector and analysis of its transcriptional activity A: Cloning of the litI promoter fragments; M: DL5000 DNA marker; I-1, I-2: promoter fragments amplified by PCR. B: PCR validation of colonies with pGL3-basic-litI promoter; M: DL5000 DNA marker; 1-5: PCR validation of colonies containing I-1 promoter; 6-10: PCR validation of colonies containing I-2 promoter. C: Luciferase RU values of the pGL3-basic-unloaded/pgpd/litI promoter vector in Trans5α cells
图6 Trans5α 菌落PCR验证及启动子载体图谱 A:含-pET28a-Amp同源臂引物扩增的litI启动子片段,M1:Trans2K DNA marker;B:Trans5α-pET28a-I-2菌落PCR,M2:DL5000 DNA Marker;C:Trans5α-pET28a-I-2-AmpR载体图谱
Fig.6 PCR verification of Trans5α colony and promoter vector map A: litI promoter fragment amplified with -pET28a-Amp homology arm primers; M1: Trans2K DNA marker. B: Colony PCR of Trans5α-pET28a-I-2; M2: DL5000 DNA marker; C: vector map of Trans5α-pET28a-I-2-AmpR
图7 含启动子片段的大肠杆菌在Amp抗性平板上的生长情况 A:Trans5α-pEASY-T1-AmpR、Trans5α-pET28a-ACP-AmpR、Trans5α-pET28a-I-2-AmpR点板结果,P:Trans5α-pEASY-T1-AmpR(阳性对照);N:Trans5α-pET28a-ACP-AmpR(阴性对照);I:Trans5α-pET28a-I-2-AmpR;B:Trans5α-pET28a-ACP-AmpR、Trans5α-pEASY-T1-AmpR、Trans5α-pET28a-I-2-AmpR分别在0、25、40 μg /mL AMP浓度的LB培养基中的OD值
Fig.7 Growth of E. coli containing promoter fragments on ampicillin-resistant plates A: The plates of Trans5α-pEASY-T1-AmpR, Trans5α-pET28a-ACP-AmpR, and Trans5α-pET28a-I-2-AmpR, P: Trans5α-pEASY-T1-AmpR(Positive control); N: Trans5α-pET28a-ACP-AmpR(Negative control); I: Trans5α-pET28a-I-2-AmpR. B: The OD values of Trans5α-pET28a-ACP-AmpR, Trans5α-pEASY-T1-AmpR and Trans5α-pET28a-I-2-AmpR in LB medium at 0, 25, and 40 μg/mL AMP, respectively
启动子片段 Promoter fragment | 启动子序列 Promoter sequence(5'-3') |
---|---|
I-2 | gcttgaatgcagcaagcaggcaactcgggcatcggagttgaccaatttggga caggcggaggtacatgtacccatgtagccatgcatacggccacctcccaag ataaatcacagctgatgatcagaccatattgctgagcatgttcgacaaacg ttttctgcgcagttagccgctatAAAAAtgttaatagaaggtaattcgatc gaaaccgtttgcaaataatattcagtgccacaagtcggtcttcaccggctc catacgattattcgcagatactgagacgacatactatctgttcattctcacctgaacatg |
表1 litI启动子片段I-2的序列
Table 1 Sequence of litI promoter fragment I-2
启动子片段 Promoter fragment | 启动子序列 Promoter sequence(5'-3') |
---|---|
I-2 | gcttgaatgcagcaagcaggcaactcgggcatcggagttgaccaatttggga caggcggaggtacatgtacccatgtagccatgcatacggccacctcccaag ataaatcacagctgatgatcagaccatattgctgagcatgttcgacaaacg ttttctgcgcagttagccgctatAAAAAtgttaatagaaggtaattcgatc gaaaccgtttgcaaataatattcagtgccacaagtcggtcttcaccggctc catacgattattcgcagatactgagacgacatactatctgttcattctcacctgaacatg |
[1] | Zhang CW, Ondeyka JG, Herath KB, et al. Tenellones A and B from a Diaporthe sp.: two highly substituted benzophenone inhibitors of parasite cGMP-dependent protein kinase activity[J]. J Nat Prod, 2005, 68(4): 611-613. |
[2] | Cui H, Lin Y, Luo MC, et al. Diaporisoindoles A-C: three isoprenylisoindole alkaloid derivatives from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3[J]. Org Lett, 2017, 19(20): 5621-5624. |
[3] | Cui H, Liu YN, Li J, et al. Diaporindenes A-D: four unusual 2, 3-dihydro-1 H-indene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3[J]. J Org Chem, 2018, 83(19): 11804-11813. |
[4] |
Gonzalez-Andrade M, Rivera-Chavez J, Sosa-Peinado A, et al. Development of the fluorescent biosensor hCalmodulin(hCaM)L39C-monobromobimane(mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin inhibitors and detecting calcium[J]. J Med Chem, 2011, 54(11): 3875-3884.
doi: 10.1021/jm200167g pmid: 21495717 |
[5] | Holker JSE, Lapper RD, Simpson TJ. The biosynthesis of fungal metabolites. Part IV. Tajixanthone: 13C nuclear magnetic resonance spectrum and feedings with[1-13C]- and[2-13C]-acetate[J]. J Chem Soc, Perkin Trans 1, 1974: 2135. |
[6] | Ishida M, Hamasaki T, Hatsuda Y. The structure of two new metabolites, emerin and emericellin, from Aspergillus nidulans[J]. Agricultural and Biological Chemistry, 1975, 39(11): 2181-2184. |
[7] | Ishida M, Hamasaki T, Hatsuda Y. Biosynthesis of shamixanthone[J]. Agricultural and Biological Chemistry, 1978, 42(2): 465-466. |
[8] | Simpson TJ, Stenzel DJ. Biosynthesis of aflatoxins. Incorporation of[1, 2-13C2]acetate,[2H3]acetate, and[1-13C, 2H3]acetate into sterigmatocystin in Aspergillus versicolor[J]. J Chem Soc, Chem Commun, 1982(15): 890-892. |
[9] | Xu JL, Liu ZM, Chen YC, et al. Lithocarols A-F, six tenellone derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508[J]. Bioorg Chem, 2019, 87: 728-735. |
[10] |
Simpson TJ. Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited[J]. Chembiochem, 2012, 13(11): 1680-1688.
doi: 10.1002/cbic.201200014 pmid: 22730213 |
[11] |
郑禾, 周玉珂, 林贤福, 等. Baeyer-Villiger单加氧酶的蛋白质改造及其催化氧化反应研究新进展[J]. 有机化学, 2019, 39(4): 903-915.
doi: 10.6023/cjoc201810023 |
Zheng H, Zhou YK, Lin XF, et al. Recent developments in protein engineering and catalytic oxidations of baeyer-villiger monooxygenase[J]. Chin J Org Chem, 2019, 39(4): 903-915. | |
[12] | Ceccoli RD, Bianchi DA, Fink MJ, et al. Cloning and characterization of the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa[J]. AMB Express, 2017, 7(1): 87. |
[13] |
Riebel A, Dudek HM, de Gonzalo G, et al. Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening[J]. Appl Microbiol Biotechnol, 2012, 95(6): 1479-1489.
doi: 10.1007/s00253-011-3823-0 pmid: 22218769 |
[14] |
刘小琴, 杨岩, 吴喆瑜, 等. 多点突变提高α-L-鼠李糖苷酶热稳定性[J]. 食品与发酵工业, 2019, 45(6): 23-29.
doi: 10.13995/j.cnki.11-1802/ts.018703 |
Liu XQ, Yang Y, Wu ZY, et al. Enhanced thermostability of α-L-rhamnosidase by multiple-site mutation[J]. Food Ferment Ind, 2019, 45(6): 23-29. | |
[15] | 朱士臣, 冯媛, 刘书来, 等. 鱼糜凝胶热稳定性的增强技术研究进展[J]. 中国食品学报, 2022, 22(7): 384-396. |
Zhu SC, Feng Y, Liu SL, et al. Recent advances of technologies to enhance thermal stability of surimi gel products[J]. J Chin Inst Food Sci Technol, 2022, 22(7): 384-396. | |
[16] | 杜昊澜, 骆树娟, Tosin Victor Adegoke, 等. 基于热不稳定区段分析和二硫键预测的玉米赤霉烯酮脱毒酶ZLHY-6热稳定性改造[J]. 食品安全质量检测学报, 2022, 13(22): 7150-7157. |
Du HL, Luo SJ, Adegoke TV, et al. Thermal stability modification of Zearalenone detoxification enzyme ZLHY-6 based on thermolabile segment analysis and disulfide bond prediction[J]. J Food Saf Qual, 2022, 13(22): 7150-7157. | |
[17] |
Liu L, Liu J, Qiu RX, et al. Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter[J]. Lett Appl Microbiol, 2003, 36(6): 358-361.
pmid: 12753242 |
[18] | Ashrafi M, Farsi M, Mirshamsi A, et al. Isolation and sequence analysis of gpdII promoter of the white button mushroom(Agaricus bisporus)from strains Holland737 and IM008[J]. International Journal of Horticultural Science and Technology, 2015, 2(1):33-41. |
[1] | 胡永波, 雷雨田, 杨永森, 陈馨, 林黄昉, 林碧英, 刘爽, 毕格, 申宝营. 黄瓜和南瓜Bcl-2相关抗凋亡家族全基因组鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(6): 219-237. |
[2] | 闫欢欢, 尚怡彤, 王丽红, 田学琴, 廖海艳, 曾斌, 胡志宏. 米曲霉异源表达合成虫草素[J]. 生物技术通报, 2024, 40(6): 290-298. |
[3] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[4] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[5] | 王健, 杨莎, 孙庆文, 陈宏宇, 杨涛, 黄园. 金钗石斛bHLH转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(6): 203-218. |
[6] | 侯雅琼, 郎红珊, 闻蒙蒙, 谷易云, 朱润洁, 汤晓丽. 猕猴桃AcHSP20基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 167-178. |
[7] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[8] | 王周, 余杰, 王金华, 王永泽, 赵筱. 厌氧表达乳酸脱氢酶以提高大肠杆菌产D-乳酸光学纯度[J]. 生物技术通报, 2024, 40(5): 290-299. |
[9] | 肖雅茹, 贾婷婷, 罗丹, 武喆, 李丽霞. 黄瓜CsERF025L转录因子的克隆及表达分析[J]. 生物技术通报, 2024, 40(4): 159-166. |
[10] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[11] | 殷亮, 王代玮, 刘悦莹, 刘海燕, 罗光宏. 蛋白酶SpP1基因克隆、表达及酶学性质的表征[J]. 生物技术通报, 2024, 40(4): 278-286. |
[12] | 张清兰, 张亚冉, 鞠志花, 王秀革, 肖遥, 王金鹏, 魏晓超, 高亚平, 白福恒, 王洪程. 牛TARDBP基因核心启动子鉴定与转录调控分析[J]. 生物技术通报, 2024, 40(4): 306-318. |
[13] | 陈晓松, 刘超杰, 郑佳, 乔宗伟, 罗惠波, 邹伟. TMT定量蛋白质组学解析Rummeliibacillus suwonensis 3B-1 生长及己酸代谢机制[J]. 生物技术通报, 2024, 40(3): 135-145. |
[14] | 杨伟杰, 杨周林, 朱浩东, 魏煜, 刘君, 刘训. 地衣素合成酶关键模块 LchAD 蛋白的性质和功能研究[J]. 生物技术通报, 2024, 40(3): 322-332. |
[15] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||