生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 21-32.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0890
牛若宇1,2,3(
), 高瞻1,2, 熊显鹏1, 祝德1, 罗皓天1,3, 马学远1, 胡冠菁1,3(
)
收稿日期:2024-09-13
出版日期:2025-04-26
发布日期:2025-04-25
通讯作者:
胡冠菁,女,博士,研究员,研究方向 :棉花进化遗传与育种;E-mail: huguanjing@caas.cn作者简介:牛若宇,男,博士研究生,研究方向 :作物遗传育种;E-mail: niuruoyu@caas.cn
基金资助:
NIU Ruo-yu1,2,3(
), GAO Zhan1,2, XIONG Xian-peng1, ZHU De1, LUO Hao-tian1,3, MA Xue-yuan1, HU Guan-jing1,3(
)
Received:2024-09-13
Published:2025-04-26
Online:2025-04-25
摘要:
驯化和长期育种导致的遗传瓶颈效应显著降低了栽培棉花的遗传多样性,限制了其新品种开发和适应未来挑战的潜力。野生种质资源则作为重要的基因库,为改良栽培棉提供了丰富的遗传多样性。本文系统综述了棉花野生种质资源在遗传多样性研究、优异耐逆资源挖掘、控制复杂农艺性状的异源四倍体重复基因挖掘,以及杂交育种材料创制中的最新进展与挑战,并靶定了4个亟待解决的关键科学问题,作为推动野生棉资源高效利用和育种创新的重要方向。未来研究将进一步利用野生种质资源的优异基因,联合基因组学、转录组学、表观组学等多组学技术,揭示关键功能基因及其调控机制,破解光周期敏感性机制,并结合基因编辑技术,推动优异基因向栽培种快速导入,实现棉花育种的创新发展。
牛若宇, 高瞻, 熊显鹏, 祝德, 罗皓天, 马学远, 胡冠菁. 棉花野生种质资源的育种应用研究与前景[J]. 生物技术通报, 2025, 41(4): 21-32.
NIU Ruo-yu, GAO Zhan, XIONG Xian-peng, ZHU De, LUO Hao-tian, MA Xue-yuan, HU Guan-jing. Breeding Applications and Prospects of Wild Cotton Germplasm Resources[J]. Biotechnology Bulletin, 2025, 41(4): 21-32.
图1 棉属物种已发表基因组21个二倍体和7个四倍体物种的参考基因组版本与发布时间,依据CottonGen数据库[19,21]
Fig. 1 Published genomes of Gossypium speciesThe reference genome version ID and release time of 21 diploid and 7 tetraploid species were labeled according to CottonGen[19,21]
杂交组合 Cross combination | 相关性状/QTL Related traits/QTL | 参考文献 Reference |
|---|---|---|
陆地棉 × 达尔文棉 G. hirsutum × G. darwinii | 耐盐性状 抗黄萎病性状 | [ [ |
陆地棉 × 黄褐棉 G. hirsutum × G. mustelinum | 抗黄萎病性状 | [ |
陆地棉 × 澳洲棉 G. hirsutum × G. australe | 抗黄萎病性状 | [ |
陆地棉 × 毛棉 G. hirsutum × G. tomentosum | 11 个耐盐相关 QTL | [ |
陆地棉 × 异常棉 G. hirsutum × G. anomalum | 抗旱性状 | [ |
表1 陆地棉与野生棉种远缘杂交耐逆性状研究
Table 1 Study on the stress resistance traits of intergeneric hybridization between G. hirsutum L.and wild cotton species
杂交组合 Cross combination | 相关性状/QTL Related traits/QTL | 参考文献 Reference |
|---|---|---|
陆地棉 × 达尔文棉 G. hirsutum × G. darwinii | 耐盐性状 抗黄萎病性状 | [ [ |
陆地棉 × 黄褐棉 G. hirsutum × G. mustelinum | 抗黄萎病性状 | [ |
陆地棉 × 澳洲棉 G. hirsutum × G. australe | 抗黄萎病性状 | [ |
陆地棉 × 毛棉 G. hirsutum × G. tomentosum | 11 个耐盐相关 QTL | [ |
陆地棉 × 异常棉 G. hirsutum × G. anomalum | 抗旱性状 | [ |
| 1 | Yuan DJ, Grover CE, Hu GJ, et al. Parallel and intertwining threads of domestication in allopolyploid cotton [J]. Adv Sci, 2021, 8(10): 2003634. |
| 2 | Hwang YT, Wijekoon C, Kalischuk M, et al. Evolution and management of the Irish potato famine pathogen Phytophthora infestans in Canada and the United States [J]. Am J Potato Res, 2014, 91(6): 579-593. |
| 3 | Ordonez N, Seidl MF, Waalwijk C, et al. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet [J]. PLoS Pathog, 2015, 11(11): e1005197. |
| 4 | Mammadov J, Buyyarapu R, Guttikonda SK, et al. Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses [J]. Front Plant Sci, 2018, 9: 886. |
| 5 | Zhu SJ, Reddy N, Jiang YR. Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into upland cotton [J]. Plant Breed, 2005, 124(6): 590-594. |
| 6 | Konan ON, D'Hont A, Baudoin JP, et al. Cytogenetics of a new trispecies hybrid in cotton: [(Gossypium hirsutum L.×G. thurberi Tod.)2 × G. longicalyx Hutch. & Lee [J]. Plant Breed, 2007, 126(2): 176-181. |
| 7 | Nazeer W, Ahmad S, Mahmood K, et al. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum) [J]. Genet Mol Res, 2014, 13(1): 1133-1143. |
| 8 | Wendel JF, Grover CE. Taxonomy and evolution of the cotton genus, Gossypium [M]//Cotton. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015: 25-44. |
| 9 | Kranthi KR. Cotton production practices: snippets from global data 2017[J]. The ICAC Recorder, 2018, XXXVI(1): 4-14. |
| 10 | Wendel JF, Brubaker CL, Seelanan T. The origin and evolution of Gossypium [M]//Physiology of Cotton. Dordrecht: Springer Netherlands, 2010: 1-18. |
| 11 | Yik CP, Birchfield W. Resistant germplasm in Gossypium species and related plants to Rotylenchulus reniformis [J]. J Nematol, 1984, 16(2): 146-153. |
| 12 | Campbell BT, Chee PW, Lubbers E, et al. Genetic improvement of the pee dee cotton germplasm collection following seventy years of plant breeding [J]. Crop Sci, 2011, 51(3): 955-968. |
| 13 | Zhao FA, Fang W, Xie D, et al. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae [J]. Plant Sci, 2012, 185-186: 176-184. |
| 14 | Cai YF, Cai XY, Wang QL, et al. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis [J]. Plant Biotechnol J, 2020, 18(3): 814-828. |
| 15 | DeJoode DR, Wendel JF. Genetic diversity and origin of the Hawaiian islands cotton, Gossypium tomentosum [J]. Am J Bot, 1992, 79(11): 1311. |
| 16 | Dong YT, Hu GJ, Yu JW, et al. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species [J]. The Plant journal : for cell and molecular biology, 2020,101 (5):1135-1151. |
| 17 | Dong YT, Hu GJ, Grover CE, et al. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species [J]. The Plant Journal: for Cell and Molecular Biology, 2022, 111(3): 872-887. |
| 18 | Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres [J]. Nature, 2012, 492(7429): 423-427. |
| 19 | Yu J, Jung S, Cheng CH, et al. CottonGen: a genomics, genetics and breeding database for cotton research [J]. Nucleic Acids Res, 2014, 42(Database issue): D1229-D1236. |
| 20 | Zhu T, Liang CZ, Meng ZG, et al. CottonFGD: an integrated functional genomics database for cotton [J]. BMC Plant Biol, 2017, 17(1): 101. |
| 21 | Yu J, Jung S, Cheng CH, et al. CottonGen: the community database for cotton genomics, genetics, and breeding research [J]. Plants, 2021, 10(12): 2805. |
| 22 | Yang ZQ, Wang J, Huang YM, et al. CottonMD: a multi-omics database for cotton biological study [J]. Nucleic Acids Res, 2023, 51(D1): D1446-D1456. |
| 23 | Huang G, Bao ZG, Feng L, et al. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development [J]. Nat Genet, 2024, 56(9): 1953-1963. |
| 24 | Hu Y, Chen JD, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton [J]. Nat Genet, 2019, 51(4): 739-748. |
| 25 | Wang MJ, Tu LL, Yuan DJ, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nat Genet, 2019, 51(2): 224-229. |
| 26 | Jeffrey Chen Z, Sreedasyam A, Ando A, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement [J]. Nat Genet, 2020, 52(5): 525-533. |
| 27 | Huang G, Wu ZG, Percy RG, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution [J]. Nat Genet, 2020, 52(5): 516-524. |
| 28 | Yang ZE, Gao CX, Zhang YH, et al. Recent progression and future perspectives in cotton genomic breeding [J]. Journal of Integrative Plant Biology, 2023, 65(2): 548-569. |
| 29 | Sreedasyam A, Lovell JT, Mamidi S, et al. Genome resources for three modern cotton lines guide future breeding efforts [J]. Nat Plants, 2024, 10(6): 1039-1051. |
| 30 | He SP, Sun GF, Geng XL, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton [J]. Nat Genet, 2021, 53(6): 916-924. |
| 31 | Li JY, Yuan DJ, Wang PC, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection [J]. Genome Biol, 2021, 22(1): 119. |
| 32 | He X, Qi ZY, Liu ZP, et al. Pangenome analysis reveals transposon-driven genome evolution in cotton [J]. BMC Biol, 2024, 22(1): 92. |
| 33 | Wang XQ, Lu HJ, Zhao Y, et al. A super pan-genome map provides genomic insights into evolution of diploid cotton species [J]. iMetaOmics, 2024, 1(1): e15. |
| 34 | Li JY, Liu ZP, You CY, et al. Convergence and divergence of diploid and tetraploid cotton genomes [J]. Nat Genet, 2024, 56(11): 2562-2573. |
| 35 | Hutchinson JB. Intra-specific differentiation in Gossypium hirsutum [J]. Heredity, 1951, 5(2): 161-193. |
| 36 | Viot CR, Wendel JF. Evolution of the cotton genus,Gossypium, and its domestication in the Americas [J]. Critical Reviews in Plant Sciences, 2023, 42(1): 1-33. |
| 37 | Tyagi P, Gore MA, Bowman DT, et al. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet, 2014, 127(2): 283-295. |
| 38 | Ning WX, Rogers KM, Hsu CY, et al. Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida [J]. Sci Rep, 2024, 14(1): 14046. |
| 39 | Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton [M]//Advances in Agronomy. Amsterdam: Elsevier, 2003: 139-186. |
| 40 | Haley AB. Sources and nature of resistance to verticillium wilt in wild races of Gossypium hirsutum [D]. Berkeley: University of California, 1976. |
| 41 | Keerio AA, Shen C, Nie YC, et al. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum [J]. International Journal of Molecular Sciences, 2018, 19(1). |
| 42 | Wang BH, Liu LM, Zhang D, et al. A genetic map between Gossypium hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping [J]. G3, 2016, 6(6): 1673-1685. |
| 43 | Romano GB, Sacks EJ, Stetina SR, et al. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum) [J]. Theor Appl Genet, 2009, 120(1): 139-150. |
| 44 | Zhai HC, Gong WK, Tan YN, et al. Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in G. hirsutum and quantitative trait locus mapping for fiber quality and yield traits [J]. PLoS One, 2016, 11(9): e0159101. |
| 45 | Li PT, Wang M, Lu QW, et al. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and chromosome segment substitution lines from G. hirsutum × G. barbadense [J]. BMC Genomics, 2017, 18(1): 705. |
| 46 | Islam MS, Thyssen GN, Jenkins JN, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton [J]. BMC Genomics, 2016, 17(1): 903. |
| 47 | Li DG, Li ZX, Hu JS, et al. Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China [J]. Genet Mol Res, 2016, 15(4): gmr15048759.19. |
| 48 | Yu DL, Ke LP, Zhang DD, et al. Multi-omics assisted identification of the key and species-specific regulatory components of drought-tolerant mechanisms in Gossypium stocksii [J]. Plant Biotechnol J, 2021, 19(9): 1690-1692. |
| 49 | Liu FJ, Cai S, Dai LJ, et al. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes [J]. Plant J, 2024, 119(1): 137-152. |
| 50 | Liu FJ, Cai S, Ma ZF, et al. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt [J]. Plant Biotechnol J, 2023, 21(12): 2507-2524. |
| 51 | Dong YT, Hu GJ, Yu JW, et al. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species [J]. Plant J, 2020, 101(5): 1135-1151. |
| 52 | Peng Z, Rehman A, Li X, et al. Comprehensive evaluation and transcriptome analysis reveal the salt tolerance mechanism in semi-wild cotton (Gossypium purpurascens) [J]. Int J Mol Sci, 2023, 24(16): 12853. |
| 53 | Rehman A, Tian CY, He SP, et al. Transcriptome dynamics of Gossypium purpurascens in response to abiotic stresses by Iso-seq and RNA-seq data [J]. Sci Data, 2024, 11(1): 477. |
| 54 | Restrepo-Montoya D, Hulse-Kemp AM, Scheffler JA, et al. Leveraging national germplasm collections to determine significantly associated categorical traits in crops: upland and Pima cotton as a case study [J]. Front Plant Sci, 2022, 13: 837038. |
| 55 | van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants [J]. Annu Rev Plant Biol, 2020, 71: 403-433. |
| 56 | 刘军杰. 陆地棉×达尔文氏棉后代种质系产量、纤维品质和抗黄萎病特性研究 [D]. 武汉: 华中农业大学, 2011. |
| Liu JJ. Study on yield, fiber quality and Verticillium wilt resistance of upland cotton × Darwinian cotton offspring germplasm lines [D]. Wuhan: Huazhong Agricultural University, 2011. | |
| 57 | Shehzad M, Zhou ZL, Ditta A, et al. Genome-wide mining and identification of protein kinase gene family impacts salinity stress tolerance in highly dense genetic map developed from interspecific cross between G. hirsutum L. and G. darwinii G. watt [J]. Agronomy, 2019, 9(9): 560. |
| 58 | 肖松华, 刘剑光, 赵君, 等. 棉花远缘杂交创制抗黄萎病新种质 [J]. 棉花学报, 2015, 27(6): 524-533. |
| Xiao SH, Liu JG, Zhao J, et al. Creation of a new resistant germplasm to Verticillium wilt by distant hybridization in upland cotton [J]. Cotton Sci, 2015, 27(6): 524-533. | |
| 59 | Oluoch G, Zheng JY, Wang XX, et al. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum [J]. Euphytica, 2016, 209(1): 223-235. |
| 60 | Xu ZZ, Chen JD, Meng S, et al. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding [J]. Plant Commun, 2022, 3(5): 100350. |
| 61 | Wang PC, Zhang J, Sun L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system [J]. Plant Biotechnol J, 2018, 16(1): 137-150. |
| 62 | Ge XY, Xu JT, Yang ZE, et al. Efficient genotype-independent cotton genetic transformation and genome editing [J]. Journal of Integrative Plant Biology, 2023, 65(4): 907-917. |
| 63 | Fernie AR, Yan JB. De novo domestication: an alternative route toward new crops for the future [J]. Mol Plant, 2019, 12(5): 615-631. |
| 64 | Wen XP, Chen ZW, Yang ZR, et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies [J]. Science China Life Sciences, 2023,66(10):2214-2256. |
| 65 | Lappalainen T, Li YI, Ramachandran S, et al. Genetic and molecular architecture of complex traits [J]. Cell, 2024, 187(5): 1059-1075. |
| 66 | Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution [J]. Trends in Genetics: TIG, 2021, 38(1): 59-72. |
| 67 | Haque S, Ahmad JS, Clark NM, et al. Computational prediction of gene regulatory networks in plant growth and development [J]. Curr Opin Plant Biol, 2019, 47: 96-105. |
| 68 | Marc Jones D, Vandepoele K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants [J]. Curr Opin Plant Biol, 2020, 54: 42-48. |
| 69 | Springer N, de León N, Grotewold E. Challenges of translating gene regulatory information into agronomic improvements [J]. Trends Plant Sci, 2019, 24(12): 1075-1082. |
| 70 | Tu XY, Mejía-Guerra MK, Valdes Franco JA, et al. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors [J]. Nat Commun, 2020, 11(1): 5089. |
| 71 | Gaudinier A, Rodriguez-Medina J, Zhang LF, et al. Transcriptional regulation of nitrogen-associated metabolism and growth [J]. Nature, 2018, 563(7730): 259-264. |
| 72 | Chen YM, Guo YW, Guan PF, et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement [J]. Molecular Plant, 2022, 16(2): 393-414. |
| 73 | Xiong X, Zhu D, Grover C E, et al. Dynamics of duplicated gene regulatory networks governing cotton fiber development following polyploidy[Z]//bioRxiv. 2024: 2024.08.1.607624. |
| 74 | Sun WN, Xia LJ, Deng JW, et al. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance [J]. Nat Commun, 2024, 15(1): 5733. |
| 75 | Song QX, Zhang TZ, Stelly DM, et al. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons [J]. Genome Biol, 2017, 18(1): 99. |
| 76 | You JQ, Liu ZP, Qi ZY, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton [J]. Nat Genet, 2023, 55(11): 1987-1997. |
| 77 | Guan XY, Pang MX, Nah G, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J]. Nat Commun, 2014, 5: 3050. |
| 78 | 华金平, 张成, 易先达, 等. 棉花远缘核质杂种的培育与育种应用 [J]. 湖北农业科学, 2003, 42(4): 25-28. |
| Hua JP, Zhang C, Yi XD, et al. Breeding and breeding use of cotton distant nucleo-cytoplasmic hybrid [J]. Hubei Agric Sci, 2003, 42(4): 25-28. | |
| 79 | 温天旺, 朱宏, 玉坎炳, 等. 陆地棉与四个四倍体棉的遗传渐渗及QTL定位研究进展 [J]. 植物遗传资源学报,2022, 23(2):315-322. |
| Wen TW, Zhu H, Yu KB, et al. Research progress on genetic introgression and QTL mapping in upland cotton and four tetraploid cotton species [J]. Journal of Plant Genetic Resources, 2022, 23(2):315-322. | |
| 80 | Pathak D, Rathore P, Kaur H, et al. Introgression and mapping of cotton leaf curl disease (CLCuD) resistance from wild Gossypium armourianum Kearney into upland cotton (G. hirsutum L.) [J]. Plant Dis, 2024. |
| 81 | Huang JB, Yang L, Yang L, et al. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae [J]. Nature, 2023, 614(7947): 303-308. |
| 82 | Lewis CF, Richmond TR. The genetics of flowering response in cotton. I. fruiting behavior of Gossypium hirsutum var. Marie-Galante in a cross with a variety of cultivated American upland cotton [J]. Genetics, 1957, 42(4): 499-509. |
| 83 | Waddle BM, Lewis CF, Richmond TR. The genetics of flowering response in cotton. III. fruiting behavior of Gossypium hirsutum race latifolium in a cross with a variety of cultivated American upland cotton [J]. Genetics, 1961, 46(4): 427-437. |
| 84 | Kushanov FN, Komilov DJ, Turaev OS, et al. Genetic analysis of mutagenesis that induces the photoperiod insensitivity of wild cotton Gossypium hirsutum Subsp. purpurascens [J]. Plants(Basel), 2022, 11(22): 3012. |
| 85 | Gowda SA, Bourland FM, Kaur B, et al. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.) [J]. Theoretical and Applied Genetics, 2023, 136(11): 230. |
| 86 | Lewis CF, Richmond TR. The genetics of flowering response in cotton. II. inheritance of flowering response in a Gossypium barbadense cross [J]. Genetics, 1960, 45(1): 79-85. |
| 87 | Zhu LL. Genetic diversity analysis and mapping of fiber quality and flowering time traits in tetraploid cotton [D]. North Carolina: North Carolina State University, 2019. |
| 88 | Zhu LL, Gowda SA, Kuraparthy V. Fine mapping and targeted genomic analyses of photoperiod-sensitive gene (GB_PPD1) in Pima cotton (Gossypium barbadense L.) [J]. Crop Sci, 2024, 64(3): 1756-1771. |
| 89 | Grover CE, Zhu X, Grupp KK, et al. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack [J]. Genet Resour Crop Evol, 2015, 62(1): 103-114. |
| 90 | Li X, Wu YL, Chi HB, et al. Genomewide identification and characterization of the genes involved in the flowering of cotton [J]. Int J Mol Sci, 2022, 23(14): 7940. |
| 91 | Zhang R, Ding J, Liu CX, et al. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species [J]. PLoS One, 2015, 10(2): e0118669. |
| 92 | 顾家琦, 朱福慧, 谢沛豪, 等. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析 [J]. 植物学报, 2024, 59(1): 34-53. |
| Gu JQ, Zhu FH, Xie PH, et al. Genome-wide identification and domestication analysis of the phytochrome PHY gene family in Gossypium [J]. Chin Bull Bot, 2024, 59(1): 34-53. | |
| 93 | Zhong Y, Liu CX, Qi XL, et al. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat Plants, 2019, 5(6): 575-580. |
| 94 | Zhong Y, Chen BJ, Li MR, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis [J]. Nat Plants, 2020, 6(5): 466-472. |
| 95 | Zhong Y, Chen BJ, Wang D, et al. In vivo maternal haploid induction in tomato [J]. Plant Biotechnology Journal, 2021, 20(2): 250-252. |
| 96 | Turcotte EL, Feaster CV. Haploids: high-frequency production from single-embryo seeds in a line of Pima cotton [J]. Science, 1963, 140(3574): 1407-1408. |
| 97 | Long L, Feng YM, Shang SZ, et al. In vivo maternal haploid induction system in cotton [J]. Plant Physiol, 2024, 194(3): 1286-1289. |
| [1] | 马利花, 侯梦娟, 朱新霞. 陆地棉GhNFD4在棉花干旱响应中的功能[J]. 生物技术通报, 2025, 41(3): 104-111. |
| [2] | 冯小康, 梁倩, 王学峰, 孙杰, 薛飞. 棉花SEC1复合体组分的鉴定与GhSCY1基因功能验证[J]. 生物技术通报, 2025, 41(3): 112-122. |
| [3] | 丁若羲, 豆硕, 安叶芝, 孔文慧, 郭文静, 张冬梅, 王省芬, 马峙英, 吴立柱. VIGS技术在棉花全生长周期中的应用拓展研究[J]. 生物技术通报, 2025, 41(2): 58-64. |
| [4] | 侯文婷, 孙琳, 张艳军, 董合忠. 基因编辑技术在棉花种质创新和遗传改良中的应用[J]. 生物技术通报, 2024, 40(7): 68-77. |
| [5] | 殷子薇, 红雨. 玫瑰红球菌NB1对玉米的耐盐促生效应及其全基因组研究[J]. 生物技术通报, 2024, 40(12): 193-207. |
| [6] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
| [7] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
| [8] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
| [9] | 邓嘉辉, 雷建峰, 赵燚, 刘敏, 胡子曜, 尤扬子, 邵武奎, 柳建飞, 刘晓东. 基于Csy4与MCP的新型迷你基因组编辑系统的构建[J]. 生物技术通报, 2023, 39(10): 68-79. |
| [10] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
| [11] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
| [12] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉同源多倍体后代筛选及性状鉴定[J]. 生物技术通报, 2022, 38(5): 64-73. |
| [13] | 赵曾强, 郭文婷, 张析, 李潇玲, 张薇. 棉花抗枯萎病相关基因GhERF5-4D的克隆及功能分析[J]. 生物技术通报, 2022, 38(4): 193-201. |
| [14] | 王娅丽, 周利利, 王娜, 程红梅. 利用流式细胞仪快速鉴定棉花倍性的方法比较[J]. 生物技术通报, 2022, 38(12): 144-148. |
| [15] | 赵燚, 雷建峰, 刘敏, 胡子曜, 代培红, 刘超, 李月, 刘晓东. CLCrV介导的VIGE体系承载力的研究[J]. 生物技术通报, 2022, 38(11): 210-219. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||