生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 90-97.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0435
林紫依1,2(), 吴一舟1, 叶芳贤1, 朱淑颖1, 刘燕敏1, 刘骕骦1(
)
收稿日期:
2024-05-09
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
刘骕骦,男,博士,副教授,研究方向 :种子学和植物耐逆分子生物学;E-mail: liu@zjhzu.edu.cn作者简介:
林紫依,女,研究方向 :种子学和植物耐逆分子生物学;E-mail: m17280305141@163.com
基金资助:
LIN Zi-yi1,2(), WU Yi-zhou1, YE Fang-xian1, ZHU Shu-ying1, LIU Yan-min1, LIU Su-shuang1(
)
Received:
2024-05-09
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 研究GmPM31启动子响应高温高湿胁迫过程中对种子活力形成的功能,为全面揭示大豆小热激蛋白参与高温高湿胁迫响应的功能奠定基础。 方法 对纯合T3代转GmPM31启动子拟南芥进行高温高湿胁迫(40℃/相对湿度100%)处理,以野生型拟南芥为对照,检测其耐受性以及气孔开度;通过GUS组织化学染色和实时荧光定量PCR检测分析大豆GmPM31启动子所驱动的GUS基因的表达情况;通过2,3,5-氯化三苯基四氮唑(TTC)染色法检测种子活力变化。 结果 与对照组相比,经高温高湿胁迫处理后的转大豆GmPM31启动子拟南芥对高温高湿的耐受性提高,GUS活性提高,在叶、根和花等中均有表达,发芽率以及种子活力增加。 结论 GmPM31启动子可提高种子对高温高湿胁迫的抗性和抗劣变的能力。
林紫依, 吴一舟, 叶芳贤, 朱淑颖, 刘燕敏, 刘骕骦. 大豆GmPM31基因启动子响应高温高湿胁迫的功能分析[J]. 生物技术通报, 2025, 41(3): 90-97.
LIN Zi-yi, WU Yi-zhou, YE Fang-xian, ZHU Shu-ying, LIU Yan-min, LIU Su-shuang. Functional Analysis of Soybean GmPM31 Gene Promoter Involvement in Response to High Temperature and Humidity Stress[J]. Biotechnology Bulletin, 2025, 41(3): 90-97.
图2 转GmPM31基因启动子拟南芥植株在高温高湿条件下气孔观察统计A:生长28 d的野生型和转GmPM31基因启动子拟南芥植株的气孔形态;B:转GmPM31基因启动子拟南芥植株经高温高湿处理1 d、2 d后的气孔开度;C:转GmPM31基因启动子拟南芥植株经高温高湿处理1 d、2 d后的气孔长度;**代表极显著水平差异(P<0.01),下同
Fig. 2 Stomata assay of GmPM3-transgenic Arabidopsis plants under HTH conditionA: Stomatal morphology of WT and transgenic Arabidopsis grown for 28 d under HTH stress. B: Stomatal opening of WT and transgenic Arabidopsis under the HTH stress for 1 d and 2 d. C: Stomatal length of WT and transgenic Arabidopsis under the HTH stress for 1 d and 2 d. ** indicate that the differences are markly significant at 0.01 level. The same below
图3 大豆GmPM31基因启动子驱动GUS基因在拟南芥各组织或器官中的表达模式A:整株生长25 d的对照组拟南芥;B:整株生长28 d的对照组拟南芥;C:整株生长25 d的实验组拟南芥;D-H:分别为生长28 d的实验组拟南芥的花、叶片、种子、荚、根;I:大豆GmPM31基因启动子驱动GUS基因在拟南芥各组织或器官中的相对表达量。不同字母代表极显著水平差异(P<0.01)
Fig. 3 Expression patterns of GUS genes driven by soybean GmPM31 gene promoter in various tissues and organs of ArabidopsisA: The control group of Arabidopsis grown for 25 d; B: the control group of Arabidopsis grown for 28 d; C: the control group of Arabidopsis grown for 25 d;D-H: the experimental group of Arabidopsis's flowers, blade, seeds, pod and root grown for 28 d, respectively; I: relative expressions of soybean GmPM31 gene promoter driving GUS genes in various tissues and organs of Arabidopsis. Different letters indicate the difference significant (P<0.01)
图4 大豆GmPM31基因启动子驱动GUS基因在拟南芥幼苗中的表达模式A:正常条件下转GmPM31启动子拟南芥幼苗植株GUS染色情况;B:高温高湿处理转GmPM31启动子拟南芥幼苗植株GUS染色情况;C:大豆GmPM31基因启动子驱动GUS基因在拟南芥幼苗中的相对表达量
Fig. 4 Expression pattern of GUS genes driven by soybean GmPM31 gene promoter in Arabidopsis seedlingsA: GUS staining of Arabidopsis seedlings with GmPM31 promoter under normal condition; B: GUS staining of transgenic Arabidopsis seedlings with GmPM31 promoter treated with high temperature and humidity; C: relative expression of GUS genes driven by soybean GmPM31 gene promoter in Arabidopsis seedlings
图5 高温高湿胁迫对GmPM31转启动子拟南芥植株种子萌发的影响A:播种7 d后经高温高湿胁迫处理2 d后收获的野生型和转GmPM31启动子拟南芥幼苗;B:对照条件下的野生型和转GmPM31启动子拟南芥种子发芽率;C:未经高温高湿处理的野生型和转GmPM31启动子拟南芥种子发芽率;D:经高温高湿处理的野生型和转GmPM31启动子拟南芥种子发芽率;E:经高温高湿处理后种子的TTC染色结果
Fig. 5 Effect of HTH stress on seed germination of GmPM31 transgenic ArabidopsisA: WT and GmPM31-transgenic Arabidopsis seedlings harvested after 7 d of sowing and then 2 d of HTH stress treatment; B: germination percentage of WT and GmPM3-transgenic Arabidopsis seeds under control conditions; C: germination percentage of WT and GmPM31-transgenic Arabidopsis seeds without HTH treatment; D: germination percentage of WT and GmPM31-transgenic Arabidopsis seeds after HTH treatment; E: TTC staining results of seeds after control and treatment groups
1 | 王文月, 姚志鹏, 于洋, 等. 我国大豆种业科技创新发展现状及对策建议 [J]. 中国农业科技导报, 2024, 26(3): 1-6. |
Wang WY, Yao ZP, Yu Y, et al. Scientific and technological innovation of soybean seed industry in China: current situation and strategy [J]. J Agric Sci Technol, 2024, 26(3): 1-6. | |
2 | 舒英杰, 周玉丽, 陶源, 等. 生理成熟期高温高湿胁迫对春大豆种子生理特性及种子劣变相关基因GmSbh1表达的影响 [J]. 生态学杂志, 2016, 35(12): 3286-3292. |
Shu YJ, Zhou YL, Tao Y, et al. Effects of high temperature and humidity stress on the physiological characters of spring soybean seeds and the expression of seed deterioration-related gene GmSbh1 at the physiological maturity stage [J]. Chin J Ecol, 2016, 35(12): 3286-3292. | |
3 | 邢悦楠, 王皓, 张琼, 等. 植物小分子热激蛋白的功能及表达调控 [J]. 植物生理学报, 2023, 59(8): 1524-1532. |
Xing YN, Wang H, Zhang Q, et al. Function and expression regulation of plant small molecule heat shock proteins [J]. Plant Physiol J, 2023, 59(8): 1524-1532. | |
4 | 刘骕骦, 邱颖胜, 刘燕敏, 等. 大豆GmPM31基因生物信息学、组织表达及高温高湿响应分析 [J]. 大豆科学, 2021, 40(5): 612-619. |
Liu SS, Qiu YS, Liu YM, et al. Analysis of soybean GmPM31 bioinformatics, tissue expression and response to high temperature and high humidity [J]. Soybean Sci, 2021, 40(5): 612-619. | |
5 | 刘骕骦, 李昕雨, 王泽博, 等. 大豆GmPM31基因的功能分析及拟南芥转化 [J]. 大豆科学, 2022, 41(5): 526-535. |
Liu SS, Li XY, Wang ZB, et al. Functional analysis of soybean GmPM31 gene and transformation into Arabidopsis thaliana [J]. Soybean Sci, 2022, 41(5): 526-535. | |
6 | 陈建琦, 赵明珠, 王义, 等. 植物中组织特异性启动子的研究进展 [J]. 北方园艺, 2023(19): 128-134. |
Chen JQ, Zhao MZ, Wang Y, et al. Research progress on tissue specific promoters in plant [J]. North Hortic, 2023(19): 128-134. | |
7 | Zhou ZX, Wang J, Yu QH, et al. Promoter activity and transcriptome analyses decipher functions of CgbHLH001 gene (Chenopodium glaucum L.) in response to abiotic stress [J]. BMC Plant Biol, 2023, 23(1): 116. |
8 | Dong GQ, Fan MW, Wang HN, et al. Functional characterization of TkSRPP promoter in response to hormones and wounding stress in transgenic tobacco [J]. Plants (Basel), 2023, 12(2): 252. |
9 | Huang JJ, Yan XT, Li JJ, et al. OsRhoGAP2 promoter drives inflorescence-preferential expression and confers responses to abiotic stresses in transgenic Arabidopsis [J]. Acta Physiol Plant, 2019, 41(5): 67. |
10 | 刘骕骦. 大豆基质金属蛋白酶基因Gm1-MMP和Gm2-MMP的分离以及响应高温高湿胁迫的功能分析 [D]. 南京: 南京农业大学, 2017. |
Liu SS. Isolation of soybean matrix metalloproteinase genes Gm1-MMP and Gm2-MMP and functional analysis in response to high temperature and high humidity stress [D]. Nanjing: Nanjing Agricultural University, 2017. | |
11 | Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity [J]. New Phytol, 2020, 227(1): 24-37. |
12 | Neto VG, Barbosa RR, Carosio MGA, et al. Sequence analysis of Ricinus communis small heat-shock protein (sHSP) subfamily and its role in abiotic stress responses [J]. Ind Crops Prod, 2020, 152: 112541. |
13 | Lemonnier P, Lawson T. Calvin cycle and guard cell metabolism impact stomatal function [J]. Semin Cell Dev Biol, 2024, 155: 59-70. |
14 | Ma W, Li J, Liu FJ, et al. GhHSP24.7 mediates mitochondrial protein acetylation to regulate stomatal conductance in response to abiotic stress in cotton [J]. Crop J, 2023, 11(4): 1128-1139. |
15 | Zhong LS, Shi YX, Xu SL, et al. Heterologous overexpression of heat shock protein 20 genes of different species of yellow Camellia in Arabidopsis thaliana reveals their roles in high calcium resistance [J]. BMC Plant Biol, 2024, 24(1): 5. |
16 | Zhang YL, Sun YL, Liu XJ, et al. Populus euphratica apyrases increase drought tolerance by modulating stomatal aperture in Arabidopsis [J]. Int J Mol Sci, 2021, 22(18): 9892. |
17 | Kaundal A, Ramu VS, Oh S, et al. GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance [J]. Plant Cell, 2017, 29(9): 2233-2248. |
18 | Wu JT, Gao T, Hu JN, et al. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses [J]. Sci Total Environ, 2022, 825: 154054. |
19 | González-Gordo S, Palma JM, Corpas FJ. Small heat shock protein (sHSP) gene family from sweet pepper (Capsicum annuum L.) fruits: involvement in ripening and modulation by nitric oxide (NO) [J]. Plants (Basel), 2023, 12(2): 389. |
20 | Wang P, Zhang TT, Li YX, et al. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress [J]. Int J Biol Macromol, 2024, 258(Pt 2): 129001. |
21 | Ding XL, Lv ML, Liu Y, et al. A small heat shock protein GmHSP18.5a improves the male fertility restorability of cytoplasmic male sterility-based restorer line under high temperature stress in soybean [J]. Plant Sci, 2023, 337: 111867. |
22 | Guo LM, Li J, He J, et al. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms [J]. Sci Rep, 2020, 10(1): 1383. |
23 | Mukesh Sankar S, Tara Satyavathi C, Barthakur S, et al. Differential modulation of heat-Inducible genes across diverse genotypes and molecular cloning of a sHSP from pearl Millet[Pennisetum glaucum (L.) R. br.] [J]. Front Plant Sci, 2021, 12: 659893. |
24 | Ma W, Zhao T, Li J, et al. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum [J]. Sci Rep, 2016, 6: 32517. |
[1] | 梁丽存, 王克芬, 宋祖洹, 刘梦婷, 李佳玉, 罗会颖, 姚斌, 杨浩萌. 优化sgRNA提高塔宾曲霉基因编辑效率[J]. 生物技术通报, 2025, 41(3): 62-70. |
[2] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
[3] | 刘克寒, 杨升辉, 黄巧云, 崔文靖. 黑龙江大豆根瘤菌及根际促共生菌株的筛选及应用[J]. 生物技术通报, 2025, 41(1): 252-262. |
[4] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
[5] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[6] | 毋舒宁, 苏永平, 李冬雪, 柏映国, 刘波, 张志伟. 一种谷氨酸棒杆菌4-异丙基苯甲酸诱导型启动子的设计与应用[J]. 生物技术通报, 2024, 40(7): 108-116. |
[7] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
[8] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[9] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
[10] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
[11] | 王周, 余杰, 王金华, 王永泽, 赵筱. 厌氧表达乳酸脱氢酶以提高大肠杆菌产D-乳酸光学纯度[J]. 生物技术通报, 2024, 40(5): 290-299. |
[12] | 娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121. |
[13] | 张清兰, 张亚冉, 鞠志花, 王秀革, 肖遥, 王金鹏, 魏晓超, 高亚平, 白福恒, 王洪程. 牛TARDBP基因核心启动子鉴定与转录调控分析[J]. 生物技术通报, 2024, 40(4): 306-318. |
[14] | 刘玉萍, 张维阳, 章卫民, 叶伟, 李冬利. Phomopsis tersa FS441聚酮杂萜类化合物生物合成基因启动子的鉴定[J]. 生物技术通报, 2024, 40(12): 248-255. |
[15] | 刘奕君, 闫伟, 何禹璇, 董立明, 龙丽坤, 李飞武. 转基因大豆多靶标质粒DNA标准分子的研制及应用[J]. 生物技术通报, 2024, 40(11): 169-183. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 909
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||