生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 179-190.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1205
• 研究报告 • 上一篇
王苗苗1(
), 赵相龙1, 王召明2, 刘志鹏1, 闫龙凤3(
)
收稿日期:2024-12-12
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
闫龙凤,女,博士,讲师,研究方向 :细胞发育与育种;E-mail: yanlf@lzu.edu.cn作者简介:王苗苗,女,硕士,研究方向 :牧草种质资源与分子育种;E-mail: 977441324@qq.com
基金资助:
WANG Miao-miao1(
), ZHAO Xiang-long1, WANG Zhao-ming2, LIU Zhi-peng1, YAN Long-feng3(
)
Received:2024-12-12
Published:2025-06-26
Online:2025-06-30
摘要:
目的 TCP(Teosinte branched 1/Cincinnata/Proliferating cell factor)是调控植物生长发育和胁迫响应的一类转录因子。解析花苜蓿TCP基因家族成员的序列结构和理化性质,了解花苜蓿MruTCP基因在干旱胁迫下的作用,为牧草分子育种提供基因资源。 方法 基于全基因组水平鉴定花苜蓿TCP基因,对其进行生物信息学分析和干旱胁迫下的表达模式分析。 结果 在花苜蓿中共鉴定到20个TCP基因,分布在7条染色体上。系统进化分析结果表明,MruTCP蛋白分为3个亚家族:PCF、CIN和CYC/TB1,各类蛋白的Motif种类和排列顺序有所差异,均含有一个共同的保守基序Motif 1,家族成员间的结构较为简单。共线性分析结果表明,花苜蓿TCP家族内存在2个片段重复事件,且与大豆之间的亲缘关系最近。启动子顺式作用元件分析的结果表明,MruTCP家族成员功能较为复杂,在信号传递、响应非生物胁迫、光信号响应、激素调节等方面均发挥作用。干旱胁迫下的转录组数据和RT-qPCR的结果表明,花苜蓿TCP基因家族成员在不同时间点和不同浓度干旱处理下的表达模式不同。其中,MruTCP05和MruTCP09包含了丰富的激素响应元件和胁迫响应元件,并且受干旱胁迫的强烈诱导。 结论 结合TCP基因家族的生物信息学分析和表达模式分析结果,推测MruTCP05和MruTCP09是调控花苜蓿耐旱性的候选基因。
王苗苗, 赵相龙, 王召明, 刘志鹏, 闫龙凤. 花苜蓿TCP基因家族的鉴定及其在干旱胁迫下的表达模式分析[J]. 生物技术通报, 2025, 41(6): 179-190.
WANG Miao-miao, ZHAO Xiang-long, WANG Zhao-ming, LIU Zhi-peng, YAN Long-feng. Identification of TCP Gene Family in Medicago ruthenica and Their Expression Pattern Analysis under Drought Stress[J]. Biotechnology Bulletin, 2025, 41(6): 179-190.
基因名称 Gene name | 正向引物Forward primer sequence (5'-3') | 反向引物Reverse primer sequence (5'-3') |
|---|---|---|
| MruActin | ATCCAGGCTGTCCTCTCCCT | ACGAAGGATGGCATGTGGGA |
| MruTCP01 | CCACTCCTGCTTCTTTCTCT | GCCGGAAGGTTTTTCTGTTT |
| MruTCP02 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP03 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP05 | CACTTCACTCGACCACAAAC | CGGCCTGATTTTGGACAAAT |
| MruTCP06 | CAGATCTGAACCACCTCCTC | TGTGCAGCTAGAGTTTTCCA |
| MruTCP09 | TGTTGGTGGTGGTAATGGAA | TTAGGTTCAGGAATCGTCGG |
| MruTCP16 | AGGAACAAATTTGGGAGGGA | GGTTCATCAGCAGAATCAGC |
| MruTCP17 | ACTCAAAATCCCAACCACCT | CGTTTCTGTTTCAACCGGTT |
| MruTCP18 | ACCGATCCAACCAACTAGTC | CTTTGCGCTGCTAGAGTTTT |
表1 花苜蓿TCP基因家族的RT-qPCR引物序列
Table 1 RT-qPCR primer sequences for the M. ruthenicaTCP gene family
基因名称 Gene name | 正向引物Forward primer sequence (5'-3') | 反向引物Reverse primer sequence (5'-3') |
|---|---|---|
| MruActin | ATCCAGGCTGTCCTCTCCCT | ACGAAGGATGGCATGTGGGA |
| MruTCP01 | CCACTCCTGCTTCTTTCTCT | GCCGGAAGGTTTTTCTGTTT |
| MruTCP02 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP03 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP05 | CACTTCACTCGACCACAAAC | CGGCCTGATTTTGGACAAAT |
| MruTCP06 | CAGATCTGAACCACCTCCTC | TGTGCAGCTAGAGTTTTCCA |
| MruTCP09 | TGTTGGTGGTGGTAATGGAA | TTAGGTTCAGGAATCGTCGG |
| MruTCP16 | AGGAACAAATTTGGGAGGGA | GGTTCATCAGCAGAATCAGC |
| MruTCP17 | ACTCAAAATCCCAACCACCT | CGTTTCTGTTTCAACCGGTT |
| MruTCP18 | ACCGATCCAACCAACTAGTC | CTTTGCGCTGCTAGAGTTTT |
| 基因名称Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (kD) | 理论等电点 pI | 不稳定系数Instability index | 脂肪系数Aliphatic index | 疏水性 Hydrophobicity | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MruTCP01 | MruT001875 | 225 | 24.52 | 8.01 | 56.29 | 62.98 | -0.76 | 细胞核 |
| MruTCP02 | MruT002689 | 206 | 22.20 | 7.02 | 81.12 | 65.29 | -0.47 | 细胞核 |
| MruTCP03 | MruT005553 | 342 | 35.89 | 4.97 | 56.45 | 62.84 | -0.364 | 细胞核 |
| MruTCP04 | MruT005664 | 390 | 44.27 | 6.32 | 55.17 | 53.31 | -0.766 | 细胞核 |
| MruTCP05 | MruT006387 | 255 | 27.23 | 9.51 | 48.03 | 69.76 | -0.543 | 细胞核 |
| MruTCP06 | MruT006697 | 509 | 54.44 | 6.43 | 58.12 | 51.1 | -0.863 | 细胞核 |
| MruTCP07 | MruT011216 | 328 | 36.21 | 6.03 | 45.67 | 61.89 | -0.74 | 细胞核 |
| MruTCP08 | MruT022062 | 337 | 37.82 | 6.1 | 43.68 | 56.05 | -0.904 | 细胞核 |
| MruTCP09 | MruT028007 | 418 | 44.08 | 6.26 | 57.08 | 59.35 | -0.609 | 细胞核 |
| MruTCP10 | MruT031885 | 329 | 36.89 | 6.36 | 48.26 | 76.38 | -0.604 | 细胞核 |
| MruTCP11 | MruT032111 | 412 | 46.55 | 9.35 | 54.68 | 57.31 | -0.966 | 细胞核 |
| MruTCP12 | MruT033252 | 233 | 25.94 | 10.08 | 70.54 | 64.08 | -0.682 | 细胞核 |
| MruTCP13 | MruT034692 | 351 | 39.72 | 7.23 | 48.98 | 57.75 | -0.948 | 细胞核 |
| MruTCP14 | MruT034836 | 383 | 43.73 | 6.71 | 53.45 | 52.53 | -1.155 | 细胞核 |
| MruTCP15 | MruT034841 | 383 | 43.74 | 6.71 | 53.45 | 52.27 | -1.154 | 细胞核 |
| MruTCP16 | MruT035144 | 286 | 30.94 | 8.68 | 51.03 | 60.42 | -0.851 | 细胞核 |
| MruTCP17 | MruT041006 | 325 | 35.38 | 9.27 | 62.8 | 75.94 | -0.424 | 细胞核 |
| MruTCP18 | MruT043711 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
| MruTCP19 | MruT043927 | 390 | 44.87 | 8.9 | 50.63 | 55.23 | -1.029 | 细胞核 |
| MruTCP20 | MruT045760 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
表2 花苜蓿TCP基因家族成员信息
Table 2 Basic information of TCP gene family in M. ruthenica
| 基因名称Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (kD) | 理论等电点 pI | 不稳定系数Instability index | 脂肪系数Aliphatic index | 疏水性 Hydrophobicity | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MruTCP01 | MruT001875 | 225 | 24.52 | 8.01 | 56.29 | 62.98 | -0.76 | 细胞核 |
| MruTCP02 | MruT002689 | 206 | 22.20 | 7.02 | 81.12 | 65.29 | -0.47 | 细胞核 |
| MruTCP03 | MruT005553 | 342 | 35.89 | 4.97 | 56.45 | 62.84 | -0.364 | 细胞核 |
| MruTCP04 | MruT005664 | 390 | 44.27 | 6.32 | 55.17 | 53.31 | -0.766 | 细胞核 |
| MruTCP05 | MruT006387 | 255 | 27.23 | 9.51 | 48.03 | 69.76 | -0.543 | 细胞核 |
| MruTCP06 | MruT006697 | 509 | 54.44 | 6.43 | 58.12 | 51.1 | -0.863 | 细胞核 |
| MruTCP07 | MruT011216 | 328 | 36.21 | 6.03 | 45.67 | 61.89 | -0.74 | 细胞核 |
| MruTCP08 | MruT022062 | 337 | 37.82 | 6.1 | 43.68 | 56.05 | -0.904 | 细胞核 |
| MruTCP09 | MruT028007 | 418 | 44.08 | 6.26 | 57.08 | 59.35 | -0.609 | 细胞核 |
| MruTCP10 | MruT031885 | 329 | 36.89 | 6.36 | 48.26 | 76.38 | -0.604 | 细胞核 |
| MruTCP11 | MruT032111 | 412 | 46.55 | 9.35 | 54.68 | 57.31 | -0.966 | 细胞核 |
| MruTCP12 | MruT033252 | 233 | 25.94 | 10.08 | 70.54 | 64.08 | -0.682 | 细胞核 |
| MruTCP13 | MruT034692 | 351 | 39.72 | 7.23 | 48.98 | 57.75 | -0.948 | 细胞核 |
| MruTCP14 | MruT034836 | 383 | 43.73 | 6.71 | 53.45 | 52.53 | -1.155 | 细胞核 |
| MruTCP15 | MruT034841 | 383 | 43.74 | 6.71 | 53.45 | 52.27 | -1.154 | 细胞核 |
| MruTCP16 | MruT035144 | 286 | 30.94 | 8.68 | 51.03 | 60.42 | -0.851 | 细胞核 |
| MruTCP17 | MruT041006 | 325 | 35.38 | 9.27 | 62.8 | 75.94 | -0.424 | 细胞核 |
| MruTCP18 | MruT043711 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
| MruTCP19 | MruT043927 | 390 | 44.87 | 8.9 | 50.63 | 55.23 | -1.029 | 细胞核 |
| MruTCP20 | MruT045760 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
图3 花苜蓿TCP基因家族进化树(A)、保守基序(B)、保守结构域(C)和基因结构(D)
Fig. 3 Phylogenetic tree(A), conserved motifs (B), conserved domain(C) and gene structure (D) of TCP gene in M. ruthenic
图8 花苜蓿TCP基因在不同时间点干旱胁迫下的表达模式分析*表示P<0.05,**表示P<0.01,下同
Fig. 8 Analysis of the expression pattern of TCP gene in M. ruthenica under different time of drought stress* indicates P<0.05 and ** indicates P<0.01. The same below
| 1 | Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form [J]. Plant Cell, 1998, 10(7): 1075-1082. |
| 2 | Ma J, Liu F, Wang QL, et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development [J]. Sci Rep, 2016, 6: 21535. |
| 3 | Chen X, Chen Z, Zhao HL, et al. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments [J]. PLoS One, 2014, 9(2): e87156. |
| 4 | Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature, 1997, 386(6624): 485-488. |
| 5 | Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum [J]. Cell, 1999, 99(4): 367-376. |
| 6 | Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to Cis elements in the rice proliferating cell nuclear antigen gene [J]. Plant Cell, 1997, 9(9): 1607-1619. |
| 7 | Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 2010, 15(1): 31-39. |
| 8 | Horn S, Pabón-Mora N, Theuß VS, et al. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids [J]. Plant J, 2015, 81(4): 559-571. |
| 9 | Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa [J]. J Integr Plant Biol, 2007, 49(6): 885-897. |
| 10 | Ding SC, Cai ZZ, Du HW, et al. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance [J]. Int J Mol Sci, 2019, 20(11): 2762. |
| 11 | Yang MF, He GD, Hou QD, et al. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress [J]. BMC Genomics, 2022, 23(1): 415. |
| 12 | Parapunova V, Busscher M, Busscher-Lange J, et al. Identification, cloning and characterization of the tomato TCP transcription factor family [J]. BMC Plant Biol, 2014, 14: 157. |
| 13 | Xu RR, Sun P, Jia FJ, et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica [J]. J Genet, 2014, 93(3): 733-746. |
| 14 | Bao S, Zhang ZX, Lian Q, et al. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence [J]. BMC Genet, 2019, 20(1): 91. |
| 15 | Shi PB, Guy KM, Wu WF, et al. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus [J]. BMC Plant Biol, 2016, 16: 85. |
| 16 | Shang XW, Han ZL, Zhang DY, et al. Genome-wide analysis of the TCP gene family and their expression pattern analysis in tea plant (Camellia sinensis) [J]. Front Plant Sci, 2022, 13: 840350. |
| 17 | Zhang W, Cochet F, Ponnaiah M, et al. The MPK8-TCP14 pathway promotes seed germination in Arabidopsis [J]. Plant J, 2019, 100(4): 677-692. |
| 18 | Yun YJ, Kim SS, Lee JH, et al. Overexpression of lettuce TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor genes (LsTCP13 and LsTCP17) promotes flowering time through upregulation of AtFT and AtAP1 in Arabidopsis [J]. Plant Biotechnol Rep, 2023, 17(4): 509-517. |
| 19 | Jin KM, Wang YJ, Zhuo RY, et al. TCP transcription factors involved in shoot development of ma bamboo (Dendrocalamus latiflorus Munro) [J]. Front Plant Sci, 2022, 13: 884443. |
| 20 | Giraud E, Ng S, Carrie C, et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana [J]. Plant Cell, 2010, 22(12): 3921-3934. |
| 21 | Li X, Yang Q, Liao XQ, et al. A natural antisense RNA improves Chrysanthemum cold tolerance by regulating the transcription factor DgTCP1 [J]. Plant Physiol, 2022, 190(1): 605-620. |
| 22 | Almeida DM, Gregorio GB, Margarida Oliveira M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype [J]. Plant Mol Biol, 2017, 93(1/2): 61-77. |
| 23 | 冯雅岚, 熊瑛, 张均, 等. TCP转录因子在植物发育和生物胁迫响应中的作用 [J]. 植物生理学报, 2018, 54(5): 709-717. |
| Feng YL, Xiong Y, Zhang J, et al. Role of TCP transcription factors in plant development and biotic stress responses [J]. Plant Physiol J, 2018, 54(5): 709-717. | |
| 24 | 魏娜, 李艳鹏, 马艺桐, 等. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析 [J]. 草业学报, 2022, 31(1): 118-130. |
| Wei N, Li YP, Ma YT, et al. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa(Medicago sativa)under drought stress [J]. Acta Prataculturae Sin, 2022, 31(1): 118-130. | |
| 25 | 李新, 杨丹, 牛奎举. 扁蓿豆SWEET基因家族鉴定及在干旱和寒冷胁迫下的表达分析 [J]. 中国草地学报, 2024, 46(9): 1-14. |
| Li X, Yang D, Niu KJ. Identification of SWEET gene family in Medicago ruthenica and expression analysis under drought and cold stress [J]. Chin J Grassland, 2024, 46(9): 1-14. | |
| 26 | Wang TZ, Ren LF, Li CH, et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress [J]. BMC Biol, 2021, 19(1): 96. |
| 27 | Yin M, Zhang SZ, Du X, et al. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history [J]. Mol Ecol Resour, 2021, 21(5): 1641-1657. |
| 28 | 石蕊. 基于转录组及小RNA分析的扁蓿豆抗旱性研究 [D]. 呼和浩特: 内蒙古农业大学, 2022. |
| Shi R. Study on drought resistance of alfalfa based on transcriptome and small RNA analysis [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
| 29 | Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105-2110. |
| 30 | Zhao JM, Zhai ZW, Li YN, et al. Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.) [J]. Front Plant Sci, 2018, 9: 1282. |
| 31 | Francis A, Dhaka N, Bakshi M, et al. Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum [J]. Sci Rep, 2016, 6: 38488. |
| 32 | Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants [J]. J Mol Evol, 2007, 65(1): 23-33. |
| 33 | Jiu ST, Xu Y, Wang JY, et al. Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera [J]. Front Genet, 2019, 10: 1276. |
| 34 | 谭政委, 郭水柱, 苏小雨, 等. 全基因组水平金银花TCP基因家族的鉴定及表达模式分析 [J]. 中草药, 2024, 55(5): 1665-1676. |
| Tan ZW, Guo SZ, Su XY, et al. Genome-wide analysis of TCP gene family and their expression pattern analysis in Lonicera japonica [J]. Chin Tradit Herb Drugs, 2024, 55(5): 1665-1676. | |
| 35 | Perez M, Guerringue Y, Ranty B, et al. Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains [J]. Plant Sci, 2019, 287: 110197. |
| 36 | 张志强, 卢世雄, 马宗桓, 等. 草莓TCP转录因子家族生物信息学鉴定及基因表达分析 [J]. 西北植物学报, 2020, 40(12): 2031-2043. |
| Zhang ZQ, Lu SX, Ma ZH, et al. Bioinformatics identification and expression analysis of TCP transcription factor family in strawberry [J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(12): 2031-2043. | |
| 37 | 周棋赢, 韩月华, 祝悦, 等. 茶树TCP家族的全基因组鉴定及其表达分析 [J]. 园艺学报, 2019, 46(10): 2021-2036. |
| Zhou QY, Han YH, Zhu Y, et al. Genome-wide identification, classification and expression analysis of TCP gene family in tea plant [J]. Acta Hortic Sin, 2019, 46(10): 2021-2036. | |
| 38 | Xiao XO, Lin WQ, Feng EY, et al. Genome-wide identification of binding sites for SmTCP7a transcription factors of eggplant during bacterial wilt resistance by ChIP-seq [J]. Int J Mol Sci, 2022, 23(12): 6844. |
| 39 | Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J, 2002, 30(3): 337-348. |
| 40 | 阚宝林, 杨勇, 杜鹏萌, 等. 香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应 [J]. 分子植物育种, 2022, 20(1): 64-75. |
| Kan BL, Yang Y, Du PM, et al. Genome-wide identification of banana TCP family and its response to low nitrogen stress [J]. Mol Plant Breed, 2022, 20(1): 64-75. | |
| 41 | Chai WB, Jiang PF, Huang GY, et al. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize [J]. Physiol Mol Biol Plants, 2017, 23(4): 779-791. |
| 42 | 张龙, 徐世强, 李静宇, 等. 穿心莲TCP基因家族全基因组鉴定及非生物胁迫下的表达分析 [J]. 中国中药杂志, 2024, 49(2): 379-388. |
| Zhang L, Xu SQ, Li JY, et al. Genome-wide identification and expression analysis of TCP gene family in Andrographis paniculata under abiotic stress [J]. China Ind Econ, 2024, 49(2): 379-388. | |
| 43 | 刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析 [J]. 中国实验方剂学杂志, 2021, 27(19): 165-174. |
| Liu J, Chen YL, Liu Y, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chin J Exp Tradit Med Formulae, 2021, 27(19): 165-174. | |
| 44 | 梅文宇, 方燕芬, 宫超, 等. 茄子TCP转录因子的鉴定及胁迫处理下的表达分析 [J]. 广东农业科学, 2022, 49(12): 20-33. |
| Mei WY, Fang YF, Gong C, et al. Genome-wide identification and expression analysis in oxidative stress of TCP transcription factor family in eggplant(Solanum melongena L.) [J]. Guangdong Agric Sci, 2022, 49(12): 20-33. | |
| 45 | Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans [J]. Nature, 2002, 418(6894): 236-243. |
| 46 | 李海伦. 甜瓜TCP转录因子基因家族鉴定与表达分析 [D]. 郑州: 河南农业大学, 2022. |
| Li HL. Identification and expression analysis of TCP transcription factor gene family in melon [D]. Zhengzhou: Henan Agricultural University, 2022. | |
| 47 | Lei N, Yu X, Li SX, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress [J]. Sci Rep, 2017, 7(1): 10016. |
| 48 | 雷其冬. 拟南芥miR319-TCP4调控植物应答干旱胁迫的分子机制研究 [D]. 昆明: 昆明理工大学, 2021. |
| Lei QD. Molecular mechanism of Arabidopsis miR319-TCP4 regulating plant response to drought stress [D]. Kunming: Kunming University of Science and Technology, 2021. | |
| 49 | Wang ST, Sun XL, Hoshino Y, et al. microRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.) [J]. PLoS One, 2014, 9(3): e91357. |
| [1] | 宗建伟, 邓海芳, 蔡沅原, 常雅雯, 朱雅琦, 杨雨华. AM真菌对干旱胁迫下文冠果根系形态和叶片结构耦合的影响[J]. 生物技术通报, 2025, 41(6): 167-178. |
| [2] | 何卫, 李俊怡, 李新妮, 马雪华, 邢媛, 曹晓宁, 乔治军, 刘思辰. 谷子泛素连接酶U-box E3基因家族的鉴定及响应非生物胁迫分析[J]. 生物技术通报, 2025, 41(5): 104-118. |
| [3] | 杨春, 王晓倩, 王红军, 晁跃辉. 蒺藜苜蓿MtZHD4基因克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2025, 41(5): 244-254. |
| [4] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [5] | 钱祺, 王增辉, 孙荣华, 罗英智, 苏良辰. 花生蛋白磷酸酶AhPDCP37的抗旱性功能研究[J]. 生物技术通报, 2025, 41(3): 98-103. |
| [6] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [7] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [8] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
| [9] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
| [10] | 陈智华, 乔振升, 李嘉其, 张晓琳, 马少杰, 何承忠, 纵丹. 滇杨TCP基因家族的全基因组鉴定与分析[J]. 生物技术通报, 2024, 40(11): 214-226. |
| [11] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
| [12] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
| [13] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
| [14] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
| [15] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||