生物技术通报 ›› 2025, Vol. 41 ›› Issue (12): 280-293.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0452

• 研究报告 • 上一篇    下一篇

新疆阿魏不同部位转录组特征分析及倍半萜合成相关基因挖掘

司旭鹏1,2(), 崔秀文1,2, 欧阳荔枝3, 房丹丹1,2, 裴龙英1,2, 方贵平1,2, 濮希蕾1,2, 马艺沔3, 张争3()   

  1. 1.新疆理工学院食品安全与营养实验教学示范中心,阿克苏 843100
    2.新疆黑木耳工程技术研究中心,阿克苏 843100
    3.中国医学科学院北京协和医学院药用植物研究所,北京 100193
  • 收稿日期:2025-05-01 出版日期:2025-12-26 发布日期:2026-01-06
  • 通讯作者: 张争,男,博士,研究员,研究方向 :药用植物次生代谢调控;E-mail: zhangzheng@implad.ac.cn
  • 作者简介:司旭鹏,男,硕士,讲师,研究方向 :药用植物次生代谢调控;E-mail: sixupeng0527@163.com
    崔秀文同为本文第一作者
  • 基金资助:
    新疆理工学院校级科研项目(ZZ202403);国家重点研发计划项目(2022YFC3501502);中国医学科学院医学与健康科技创新工程项目(2022-I2M-1-017)

Transcriptome Analysis of Different Parts of Ferula Sinkiangensis K. M. Shen and Exploration of Genes Related to Sesquiterpene Synthesis

SI Xu-peng1,2(), CUI Xiu-wen1,2, OUYANG Li-zhi3, FANG Dan-dan1,2, PEI Long-ying1,2, FANG Gui-ping1,2, PU Xi-lei1,2, MA Yi-mian3, ZHANG Zheng3()   

  1. 1.Experimental Teaching Demonstration Center of Food Safety and Nutrition, Xinjiang Institute of Technology, Akesu 843100
    2.Xinjiang Auricularia Engineering Technology Research Center, Akesu 843100
    3.Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193
  • Received:2025-05-01 Published:2025-12-26 Online:2026-01-06

摘要:

目的 分析新疆阿魏不同部位的转录组信息,发掘倍半萜类成分生物合成关键代谢通路和调控基因,为新疆阿魏分子育种和资源开发提供基因资源。 方法 通过转录组测序获得新疆阿魏根茎叶不同部位的Unigenes序列,并进行生物信息学分析。 结果 经过转录组测序共获得116 517个transcripts,共有44 896条Unigenes序列被注释,新疆阿魏与胡萝卜亚种(Daucus carota subsp. sativus)具有的同源序列匹配度比例最高。19 290个Unigenes被注释于生物过程、细胞组成和分子功能。通过KEGG富集到萜类和聚酮化合物代谢通路(11个通路,204条Unigenes)和其他次生代谢产物合成通路(17个通路,233条Unigenes),进一步研究发现,与倍半萜类合成相关的Unigenes为57个,涉及9个关键酶基因的34条全长转录本。差异表达基因主要富集在MEP途径,6个表达趋势变化明显的酶基因RT-qPCR结果与RNA-seq结果呈现相似的表达模式。表达分析显示倍半萜合成下游关键基因P450TPS在根中相对表达量最高,DXSHMGR在叶中的表达量最高,AACTDXR在茎中表达量最高。同时,转录组共预测到28 017个CDS序列,18 86个转录因子,14 277个SSR位点及9 844对相应引物。 结论 通过转录组分析明确了新疆阿魏倍半萜类物质的生物合成途径,推测根中P450TPS为倍半萜合成下游关键基因。

关键词: 新疆阿魏, 转录组, 次生代谢, 代谢通路, SSR

Abstract:

Objective By analyzing the transcriptome information of different parts of Ferula sinkiangensis, we aim to explore the key metabolic pathways and regulatory genes involved in the biosynthesis of sesquiterpenes, providing genetic resources for molecular breeding and resource development of F. sinkiangensis Method The Unigene sequences of different parts of the roots, stems and leaves of F. sinkiangensis were obtained by transcriptome sequencing, and bioinformatics analysis was carried out. Result A total of 116 517 transcripts were obtained by transcriptome sequencing, and a total of 44 896 Unigene sequences were annotated. F. sinkiangensis has the highest proportion of homologous sequence matching with Daucus carota subsp. sativus. A total of 19 290 Unigenes were annotated in biological processes, cell composition and molecular function. The metabolic pathways of terpenoids and polyketides (11 pathways, 204 Unigenes) and other secondary metabolite synthesis pathways (17 pathways, 233 Unigenes) were enriched by KEGG. Further studies showed that 57 Unigenes were related to sesquiterpene synthesis, involving 34 full-length transcripts of 9 key enzyme genes. The differentially expressed genes were mainly enriched in the MEP pathway, and the RT-qPCR results of six enzyme genes with obvious expression trends showed similar expression patterns with the RNA-seq results. The expression analysis showed that the relative expressions of P450 and TPS, the key genes downstream of sesquiterpene synthesis, were the highest in the roots, the expressions of DXS and HMGR were the highest in the leaves, and the expressions of AACT and DXR were the highest in the stems. Meanwhile, a total of 28 017 CDS sequences, 1 886 transcription factors, 14 277 SSR loci and 9 844 pairs of corresponding primers were predicted in the transcriptome. Conclusion Through transcriptome analysis, the biosynthetic pathway of sesquiterpenes in F. sinkiangensis is clarified, and it is speculated that P450 and TPS in the roots are the key downstream genes of sesquiterpene synthesis.

Key words: Ferula sinkiangensis K. M. Shen, transcriptome, secondary metabolism, metabolic pathway, SSR