生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 272-280.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1201
李成花(
), 豆飞飞, 任毓昭, 刘彩霞, 刘凤楼, 王掌军, 李清峰(
)
收稿日期:2024-12-12
出版日期:2025-07-26
发布日期:2025-07-22
通讯作者:
李清峰,男,博士,副教授,研究方向 :麦类作物遗传育种;E-mail: liqingfeng2017@nxu.edu.cn作者简介:李成花,女,硕士研究生,研究方向 :麦类作物遗传育种;E-mail: 19995556402@163.com
基金资助:
LI Cheng-hua(
), DOU Fei-fei, REN Yu-zhao, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng(
)
Received:2024-12-12
Published:2025-07-26
Online:2025-07-22
摘要:
目的 白粉病作为危害小麦的重要病害之一,对小麦的产量和品质构成严重威胁,通过外施水杨酸探究其对白粉菌侵染的调控作用,并结合白粉菌转录组分析揭示其侵染机制及水杨酸介导的抗病分子基础。 方法 以白粉菌侵染感病普通小麦中作9504发病后采集的小麦白粉菌为材料,对小麦叶片感病后1-4 d的小麦白粉菌进行转录组分析,同时通过外施水杨酸以观察植物激素对白粉菌侵染小麦的影响。 结果 白粉菌转录组结果显示,与1 d相比,4 d时上调了399个基因,下调了1 110个基因。上调基因富集在次级代谢的生物合成、代谢通路、蛋白酶体等通路,下调基因主要富集在缬氨酸、亮氨酸和异亮氨酸的降解等通路。对上述基因进行绘制蛋白互作网络图,发现BGTH12_LOCUS642、BGTH12_LOCUS3045和BGTH12_LOCUS5497为白粉菌核心hub基因,表明这3个基因在侵染小麦过程中发挥重要作用。另外,研究发现外源施加SA显著提高了小麦中ERF109、PP2C30、TIFY6B、HSP70、At4g15970和HERK1这6个hub基因的表达量,进而降低白粉菌的危害。 结论 白粉菌在侵染小麦的过程中有大量差异基因的表达,BGTH12_LOCUS642、BGTH12_LOCUS3045和BGTH12_LOCUS5497为白粉菌核心hub基因。外施水杨酸可以诱导小麦中抗性基因表达来对抗白粉菌致病基因进而抑制分生孢子的生长发育,从而一定程度上减缓白粉菌的侵染,为小麦白粉病抗性研究增加新的途径。
李成花, 豆飞飞, 任毓昭, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 外施水杨酸对白粉菌侵染小麦的影响及白粉菌转录组分析[J]. 生物技术通报, 2025, 41(7): 272-280.
LI Cheng-hua, DOU Fei-fei, REN Yu-zhao, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Effect of Exogenous Salicylic Acid on Wheat Infested with Blumeria graminis f. sp. tritici and Its Transcriptome Analysis[J]. Biotechnology Bulletin, 2025, 41(7): 272-280.
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| ERF109 | TraesCS1A02G370700.1 | AGGGGCACGAGTACATGATC | AGCTTCATCAGGTCCTGCAG |
| T7H20-70 | TraesCS1D02G280200.2 | TGGACGCCAAGAAGAGGTC | CTTGCCACCAATCACCTCTG |
| CIGR2 | TraesCS2A02G189600.1 | ATCCACCCCTTCAGCAACAT | GAGGGGCTTGCTCTTCCAG |
| HSP70 | TraesCS4B02G205700.1 | TCGGCACCACATACTCCTG | CAGTCCACTTCTTCGATCTTGG |
| PP2C30 | TraesCS4B02G210100.1 | ATGTCAGAGATCCGCCGC | GTTGTCCGAGCTCTGCCG |
| TIFY6B | TraesCS5A02G204900.1 | GGAGTCAGCTTACTTTGGGG | CTAAAGCTGATGTTCCTGGGC |
| DUF4228 | TraesCS5D02G414000.1 | ACGGCGAGGGTGGTTCTC | GAGATGGCGGTTAGGTCGG |
| At4g15970 | TraesCS5D02G536500.1 | CAGCAGCAACATTAGCCCC | CACGTCCAACACATTCCTCA |
| tmem53 | TraesCS7B02G502200.1 | AAACTCTCCCACCACCACAG | CGCAGTCCTCCAAGAAGTTG |
| HERK1 | TraesCS7D02G338800.3 | CTCTACTCCCCTTTCCGCTG | TCACCTCCCCTCAGCTTTG |
| FLA17 | TraesCS2B02G263900.1 | TCCTCCTCTGCCTGGTACT | CCTTCCAACAACTTCCCGC |
| Actin | TACTCCCTCACAACAACCG | AACAAGAGTCACCTCCAAGA |
表1 实时荧光定量PCR引物
Table 1 Real-time fluorescence quantitative PCR Primers
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| ERF109 | TraesCS1A02G370700.1 | AGGGGCACGAGTACATGATC | AGCTTCATCAGGTCCTGCAG |
| T7H20-70 | TraesCS1D02G280200.2 | TGGACGCCAAGAAGAGGTC | CTTGCCACCAATCACCTCTG |
| CIGR2 | TraesCS2A02G189600.1 | ATCCACCCCTTCAGCAACAT | GAGGGGCTTGCTCTTCCAG |
| HSP70 | TraesCS4B02G205700.1 | TCGGCACCACATACTCCTG | CAGTCCACTTCTTCGATCTTGG |
| PP2C30 | TraesCS4B02G210100.1 | ATGTCAGAGATCCGCCGC | GTTGTCCGAGCTCTGCCG |
| TIFY6B | TraesCS5A02G204900.1 | GGAGTCAGCTTACTTTGGGG | CTAAAGCTGATGTTCCTGGGC |
| DUF4228 | TraesCS5D02G414000.1 | ACGGCGAGGGTGGTTCTC | GAGATGGCGGTTAGGTCGG |
| At4g15970 | TraesCS5D02G536500.1 | CAGCAGCAACATTAGCCCC | CACGTCCAACACATTCCTCA |
| tmem53 | TraesCS7B02G502200.1 | AAACTCTCCCACCACCACAG | CGCAGTCCTCCAAGAAGTTG |
| HERK1 | TraesCS7D02G338800.3 | CTCTACTCCCCTTTCCGCTG | TCACCTCCCCTCAGCTTTG |
| FLA17 | TraesCS2B02G263900.1 | TCCTCCTCTGCCTGGTACT | CCTTCCAACAACTTCCCGC |
| Actin | TACTCCCTCACAACAACCG | AACAAGAGTCACCTCCAAGA |
图1 1-4 d的白粉菌转录组分析A:样本主成分分析;B:韦恩图;C:差异基因数目
Fig. 1 Transcriptome analysis of powdery mildew from 1-4 dA: Principal component analysis for samples. B: Venn plot. C: Histogram of number of DEGs
图6 外源水杨酸诱导后接种白粉菌时关键激素基因表达情况不同小写字母代表在P<0.05水平上差异显著
Fig. 6 Expressions of key hormone genes during inoculation of Bgt after induction by exogenous salicylic acidDifferent letters indicate significant difference at P<0.05 level
图7 显微镜下外源水杨酸对白粉菌生长状态的影响A:白粉菌正常生长状态;B:施加外源水杨酸后白粉菌生长状态
Fig. 7 Effect of exogenous salicylic acid on the growth state of Bgt under microscopeA: The normal growth state of Bgt. B: The growth state of Bgt after the application of exogenous salicylic acid
| [1] | Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense [J]. Plant J, 2021, 105(2): 489-504. |
| [2] | Pokotylo I, Hodges M, Kravets V, et al. A ménage à trois: salicylic acid, growth inhibition, and immunity [J]. Trends Plant Sci, 2022, 27(5): 460-471. |
| [3] | Yang J, Duan GH, Li CQ, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses [J]. Front Plant Sci, 2019, 10: 1349. |
| [4] | Zhao H, Yin CC, Ma B, et al. Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms [J]. J Integr Plant Biol, 2021, 63(1): 102-125. |
| [5] | Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance [J]. Front Plant Sci, 2013, 4: 30. |
| [6] | Ádám AL, Nagy ZÁ, Kátay G, et al. Signals of systemic immunity in plants: progress and open questions [J]. Int J Mol Sci, 2018, 19(4): 1146. |
| [7] | Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI) [J]. Mol Plant, 2015, 8(4): 521-539. |
| [8] | Lee HJ, Park YJ, Seo PJ, et al. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis [J]. Plant Cell, 2015, 27(12): 3425-3438. |
| [9] | Li L, Li M, Yu LP, et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity [J]. Cell Host Microbe, 2014, 15(3): 329-338. |
| [10] | Luo XM, Xu N, Huang JK, et al. A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling [J]. Plant Physiol, 2017, 174(4): 2501-2514. |
| [11] | Naveed ZA, Wei XY, Chen JJ, et al. The PTI to ETI continuum in Phytophthora-plant interactions [J]. Front Plant Sci, 2020, 11: 593905. |
| [12] | Takken FLW, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function [J]. Curr Opin Plant Biol, 2012, 15(4): 375-384. |
| [13] | Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease [J]. Annu Rev Phytopathol, 2009, 47: 177-206. |
| [14] | Yuan MH, Jiang ZY, Bi GZ, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity [J]. Nature, 2021, 592(7852): 105-109. |
| [15] | Wang W, Withers J, Li H, et al. Structural basis of salicylic acid perception by Arabidopsis NPR proteins [J]. Nature, 2020, 586(7828): 311-316. |
| [16] | Wicker T, Oberhaensli S, Parlange F, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph [J]. Nat Genet, 2013, 45(9): 1092-1096. |
| [17] | Depotter JRL, Doehlemann G. Target the core: durable plant resistance against filamentous plant pathogens through effector recognition [J]. Pest Manag Sci, 2020, 76(2): 426-431. |
| [18] | Kanja C, Hammond-Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens [J]. Mol Plant Pathol, 2020, 21(10): 1353-1376. |
| [19] | Bourras S, McNally KE, Ben-David R, et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew [J]. Plant Cell, 2015, 27(10): 2991-3012. |
| [20] | Hewitt T, Müller MC, Molnár I, et al. A highly differentiated region of wheat chromosome 7AL encodes aPM1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis [J]. New Phytol, 2021, 229(5): 2812-2826. |
| [21] | Kunz L, Sotiropoulos AG, Graf J, et al. The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen [J]. BMC Biol, 2023, 21(1): 29. |
| [22] | Müller MC, Praz CR, Sotiropoulos AG, et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew [J]. New Phytol, 2019, 221(4): 2176-2189. |
| [23] | Praz CR, Bourras S, Zeng FS, et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus [J]. New Phytol, 2017, 213(3): 1301-1314. |
| [24] | Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202. |
| [25] | Bai SY, Long JH, Cui YY, et al. Regulation of hormone pathways in wheat infested by Blumeria graminis f.sp. tritici [J]. BMC Plant Biol, 2023, 23(1): 554. |
| [26] | 白双宇, 崔原瑗, 王昭懿, 等. 小麦响应白粉菌侵染的表型特征、生理应答和免疫信号传导通路分析 [J]. 植物遗传资源学报, 2024, 25(4): 522-532. |
| Bai SY, Cui YY, Wang ZY, et al. Analysis of phenotypic characteristics, physiological responses, and immune signaling pathways in wheat in response to Blumeria graminis f. sp. tritici [J]. Journal of Plant Genetic Resources, 2024, 25(4): 522-532. | |
| [27] | 王俊美, 徐飞, 宋玉立, 等. 小麦白粉菌ADP/ATP载体蛋白基因的克隆及表达特征分析 [J]. 植物病理学报, 2018, 48(3): 339-345. |
| Wang JM, Xu F, Song YL, et al. Cloning of an ADP/ATP carrier protein-coding genein Blumeria graminis. sp. tritici and analysis on its expression pattern during infection process [J]. Acta Phytopathol Sin, 2018, 48(3): 339-345. | |
| [28] | 李晓川, 王朝海, 周平, 等. 基于转录组测序的马铃薯晚疫病抗病基因筛选 [J]. 西南农业学报, 2023, 36(4): 732-741. |
| Li XC, Wang CH, Zhou P, et al. Screening of resistant genes to late blight disease of potato (Solanum tuberosum L.) based on transcriptome sequencing [J]. Southwest China Journal of Agricultural Sciences, 2023, 36(4): 732-741. | |
| [29] | 张宇, 王金开, 陈小林, 等. 水稻响应白叶枯病菌侵染的转录组分析 [J]. 南方农业学报, 2023, 54(3): 815-828. |
| Zhang Y, Wang JK, Chen XL, et al. Transcriptome analysis of rice in response to the infection by Xanthomonas oryzae pv. oryzae [J]. J South Agric, 2023, 54(3): 815-828. | |
| [30] | Gow NAR, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function [J]. Microbiol Spectr, 2017, 5(3): 5.3.01. |
| [31] | Presti LL, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility [J]. Annu Rev Plant Biol, 2015, 66: 513-545. |
| [32] | Zhang H, Zheng X, Zhang Z. The Magnaporthe grisea species complex and plant pathogenesis [J]. Mol Plant Pathol, 2016, 17(6): 796-804. |
| [33] | Ivanov SV, Stefcheva M, P- EMITEVA L. Salicylic acid alleviates leaf rust-inducible oxidative processes in wheat plants [J]. Oxid Commun, 2008, 31(4): 895-903. |
| [34] | Chen LZ, Liu J, Liu ZY, et al. Genome-wide identification and expression analysis of the MLO gene family reveal a candidate gene associated with powdery mildew susceptibility in bitter gourd (Momordica charantia) [J]. Eur J Plant Pathol, 2021, 159(1): 163-178. |
| [35] | 齐学礼, 李莹, 李春盈, 等. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析 [J]. 作物学报, 2024, 50(4): 1080-1090. |
| Qi XL, Li Y, Li CY, et al. Based on transcriptome, the mitigation effect of exogenous salicylic acid on wheat seedlings infected by stripe rust and the analysis of differentially expressed genes were explored [J]. China Ind Econ, 2024, 50(4): 1080-1090. | |
| [36] | 王子然, 鲁一薇, 杨婧怡, 等. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响 [J]. 作物学报, 2024, 50(11): 2883-2895. |
| Wang ZR, Lu YW, Yang JY, et al. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. China Ind Econ, 2024, 50(11): 2883-2895. |
| [1] | 李艳伟, 杨妍妍, 孙亚玲, 霍雨猛, 王振宝, 刘冰江. 基于转录组分析植物激素对洋葱鳞茎膨大发育的调控机制[J]. 生物技术通报, 2025, 41(2): 187-201. |
| [2] | 邹婷婷, 杨莉, 曲茜彤, 陈子航, 潘曦, 邵鸿旭, 王小丽. 菠菜高迁移率族基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(12): 84-92. |
| [3] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
| [4] | 宿强, 左慧, 晁跃辉, 曾会明. 结缕草响应立枯丝核菌侵染的SA合成途径鉴定[J]. 生物技术通报, 2020, 36(10): 32-39. |
| [5] | 孙德智, 杨恒山, 宋桂云, 范富, 侯迷红, 彭靖, 韩晓日. 根施SA对番茄幼苗盐害损伤的修复效应[J]. 生物技术通报, 2019, 35(11): 30-38. |
| [6] | 王丹丹, 迟春宁, 白晶, 陈冲, 池春玉, 丁国华. 水杨酸和霜霉病诱导黄瓜PCD过程中线粒体相关基因的表达分析[J]. 生物技术通报, 2018, 34(7): 85-91. |
| [7] | 王瑞波. 水杨酸对镉胁迫小麦叶绿素荧光参数的影响[J]. 生物技术通报, 2017, 33(7): 96-99. |
| [8] | 邹同雷, 汪芳俊, 侯赛男, 孙雪, 徐年军. 两种水杨酸代谢相关酶在逆境龙须菜中的活性研究[J]. 生物技术通报, 2016, 32(5): 194-199. |
| [9] | 柳琳, 彭波, 蒋春苗, 程在全. 疣粒野生稻胚性细胞与叶片抗白叶枯病信号物质和相关抗病基因的表达差异[J]. 生物技术通报, 2016, 32(10): 199-204. |
| [10] | 沈佳, 江灵芝, 孙雪. 蛋白核小球藻Fesod基因的克隆及表达分析[J]. 生物技术通报, 2015, 31(5): 173-178. |
| [11] | 任菲;张荣佳;陈强;白艳波;黄菲;李雪梅;. ABA和SA对于提高植物抗旱及抗盐性的研究进展[J]. , 2012, 0(03): 17-21. |
| [12] | 汪开治. 日利用玫瑰长春花细胞悬浮培养生产姜黄素糖苷[J]. , 2005, 0(05): 66-66. |
| [13] | E.R.Ward. 植物转基因表达的化学调控[J]. , 1994, 0(01): 1-4. |
| [14] | . 生物防治[J]. , 1994, 0(01): 92-95. |
| [15] | 李思经;. 阿司匹林促进体细胞胚胎发生[J]. , 1990, 0(05): 10-10. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||