[1] 方允中, 李文杰. 自由基与酶: 基础理论及其在生物学和医学中的应用[M]. 北京: 科学出版社, 1989 :147.
[2]Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3):1143-1151.
[3]Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Biology, 1998, 49(1):199-222.
[4]Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J]. Nature, 2000, 406(6797):731-734.
[5]Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Biol, 1992, 43(1):83-116.
[6] 邱嵘, 郑荣梁. 活性氧信号传导作用的研究进展[J]. 生物化学与生物物理进展, 2001, 28(3):287-288.
[7] 钱易. 水体颗粒物和难降解有机物的特性与控制技术原理[M]. 北京: 中国环境科学出版社, 2000 :6.
[8] 朱琳娜, 吴超, 何争光. Fenton 试剂法处理难生物降解有机废水最新进展[J]. 能源技术与管理, 2006(2):59-62.
[9] 李金莲, 金永峰, 钱慧娟. Fenton 试剂在水处理中的应用研究[J]. 化工科技市场, 2006, 29(6):28-33.
[10] 陈琳, 杜瑛, 雷乐成. UV/H2O2 光化学氧化降解对氯苯酚废水的反应动力学[J]. 环境科学, 2003, 24(5):106-109.
[11]Liszkay A, van der Zalm E, Schopfer P. Production of reactive-oxygen intermediates(O2 , H2O2 and?OH)by maize roots and their role in wall loosening and elongation growth[J]. Plant Physiol, 2004, 136 :3114-3123.
[12]Cruz de Carvalho MH. Drought stress and reactive oxygen species : production, scavenging and signaling[J]. Plant Signal Behav, 2008, 3 :156-165.
[13]Foyer CH, Descourvières P, Kunert KJ. Protection against oxygen radicals :An important defence mechanism studied in transgenic plants[J]. Plant Cell Environ, 1994, 17 :507-523.
[14]Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiol Plant, 2003, 119 :355-364.
[15]Dat J, et al. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci, 2000, 57 :779-795.
[16]Elstner EF. Mechanisms of oxygen activation in different compartments of plant cells[J]. Current Topics in Plant Physiology, 1991, 6 :13-25.
[17]Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development[J]. Current Opinion in Plant Biology, 2005, 8(4):397-403.
[18]Carol RJ, Dolan L. The role of reactive oxygen species in cell growth :lessons from root hairs[J]. J Exp Bot, 2006, 57 :18291834.
[19]Bolwell GP, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defense broad perspective[J]. Physiol Mol Plant Pathol, 1997, 51 :347-366.
[20]Keilis-Borok VI, Knopoff L, Rotwain IM, et al. Intermediate-term prediction of occurrence times of strong earthquakes[J]. Nature, 1988, 335(6192):690-694.
[21]McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein(hemocuprein)[J]. J Biol Chem, 1969, 244 (22):6049-6055.
[22]Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs)in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53 :1331-1341.
[23] 杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学, 2001, 17(2):121-125.
[24]Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism[J]. Plant Physiol, 2001, 126 :1055-1060.
[25]Yu H, Chen X, Hong YY, et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density[J]. The Plant Cell, 2008, 20(4):1134-1151.
[26]Bishop NI, Urbig T, Senger H. Complete separation of the β, ε-and β, β-carotenoid biosynthetic pathways by a unique mutation of the lycopene cyclase in the green alga, Scenedesmus obliquus[J]. FEBS Letters, 1995, 367(2):158-162.
[27]Norris SR, Shen X, Della PD. Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase[J]. Plant Physiology, 1998, 117(4):1317-1323.
[28]Quan LJ, Zhang B, Shi WW, et al. Hydrogen peroxide in plants :a versatile molecule of the reactive oxygen species network[J]. J Integr Plant Biol, 2008, 50 :2-18.
[29]Sinhababu A, Kar RK. Response of four fuel-wood yielding seedlings to water stress[J]. Plant Physiol, 2002, 7 :88-91.
[30]Sinhababu A, Kar RK. Comparative responses of three fuel-wood yielding plants to PEG-induced water stress at seedling stage[J]. Acta Physiol Plant, 2003, 25 :403-409.
[31]Sinhababu A, Banerjee A, Kar RK. Assessment of tolerance to water stress at seedling stage of four fuel wood yielding legumes[J]. Theoret Exp Biol, 2004, 1 :10-16.
[32] 孟慧, 张霞, 等. 转录因子ABP9 基因过表达对植物生长发育的影响分析[J]. 中国农学通报, 2007, 23(6):94-98.
[33]Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses[J]. Plant Physiology, 2005, 139(2):566-573.
[34]Pérez-Torres E, Paredes M, Polanco V, et al. Gene expression analysis :a way to study tolerance to abiotic stresses in crops species[J]. Chilean J Agric Res, 2009, 69 :260-269.
[35]Wang BC, et al. Identification and quantitative analysis of significantly accumulated proteins during the Arabidopsis seedling Deetiolation process[J]. J Integrative Plant Biol, 2006, 48 :104-113.
[36]Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice[J]. Diabetes, 2000,49(9), 1534-1542.
[37]Yamauchi T, Kamon J, Waki H,et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med, 2001, 7(8):941-946.
[38]Abdel-Gaber AM, Abd-El-Nabey BA, Sidahmed IM, et al. Inhibitive action of some plant extracts on the corrosion of steel in acidic media[J]. Corrosion Science, 2006, 48(9):2765-2779.
[39]Solimando DA, Jr BS,Pharm MA. Drug information handbook for oncology[M]. 7th edition.Canada :Lexi-Comp, Inc., 2008.
[40]Sato Y, Murakami T, Funatsuki H, et al. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings[J]. J Exp Bot, 2001, 52(354):145-151.
[41]Matsumura T, Tabayashi N, Kamagata Y, et al. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress[J]. Physiolo Plant, 2002, 116(3):317-327.
[42]Prashanth SR, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance[J]. Transgenic Res, 2008, 17(2):281-291.
[43]Zhao F, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice[J]. Plant Cell, 2006, 86 :349-358.
[44]Zhang Z, Zhang Q, Wu J, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2)plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PloS One, 2013, 8(2):e57472.
[45]McKersie BD, Chen Y, De BM, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L. )[J]. Plant Physiology, 1993, 103(4):1155-1163.
[46]Samis K, Bowley S, McKersie B. Pyramiding Mn-superoxide dis-mutase transgenes to improve persistence and biomass production in alfalfa[J]. J Exp Bot, 2002, 53(372):1343-1350.
[47] 韩利芳, 张玉发. 烟草Mn SOD 基因在保定苜蓿中的转化[J]. 生物技术通报, 2004(1):39-46.
[48]Aquilante C, Leternt SP, et al. Increased brain P-glycoprotein in morphine tolerant rats[J]. Pharmacol Let, 2000, 66 :47-51.
[49]Rubio MC, Gonzalez EM, Minchin FR, et al. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases[J]. Physiologia Plantarum, 2002, 115(4):531-540.
[50] 王瑛, 朱宝成, 孙毅, 等. 外源lea3 基因转化紫花苜蓿的研究[J]. 核农学报, 2007, 21(3):249-252. |