[1] Johan M. Regulation of gene expression by jasmonate hormones[J].Phytochemistry, 2009, 70: 1560-1570. [2] Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios [J]. New Phytol, 2008, 177: 301-318. [3] Turner JG, Ellis C, Devoto A. The jasmonate signal pathway[J].Plant Cell, 2002, 14: 153-S164. [4] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Ann Bot, 2007, 100: 681-697. [5] Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks[J]. Plant Cell(Suppl.), 2002, 14: S131-S151. [6] Guo H, Ecker JR. The ethylene signaling pathway: new insights[J]. Curr Opin Plant Biol, 2004, 7: 40-49. [7] Shah J. The salicylic acid loop in plant defense[J]. Curr Opin Plant Biol, 2003, 6: 365-371. [8] Laura MT, Flor de Dalia DF, Angela María CO, et al. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide,salicylic acid and chitosan foliar applications[J]. Int J Mol Sci,2013, 14: 10178-10196. [9] Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense[J]. Curr Opin Plant Biol, 2002, 5: 325-331. [10] Pieterse CMJ, Leon-Reyes Avander ES, Van Wees SCM. Networking by small-molecule hormones in plant immunity[J]. Nat Chem Biol, 2009, 5: 308-316. [11] Lai Y, Dang FF, Lin J, et al. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Physiol Bioch,2013, 62: 70-78. [12] Heath MC. Hypersensitive response-related death[J]. Plant Mol Biol, 2000, 44: 321-334. [13] Edreva AA. Novel strategy for plant protection: induced resistance[J]. J Cell Mol Biol, 2004, 3: 61-69. [14] Sato F, Koiwa H, Sakai Y, et al. Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast[J].Biochem Biophys Res Commum, 1995, 211: 909-913. [15] Van Loon LC, Rep M and Pieterse CM. Significance of inducible defense-related proteins in infected plants[J]. Annu Rev Phytopathol, 2006, 44: 135-162. [16] 包丽媛, 张家为. 植物病程相关蛋白1 基因家族特性的研究进 展[J]. 甘肃农业科技, 2009, 1: 34-36. [17] Hamamouch N, Li C, Seo PL, et al. Expression of Arabidopsis pathogenesis-related genes during nematode infection[J]. Mol Plant Pathol, 2011, 12(4): 355-364. [18] Bonasera JM, Kim JF, Beer SV. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol, 2006, 6: 23. [19] 黄俊华. 中国猪毛菜属植物的地理分布特点[J]. 干旱区地理,2005, 28(3): 325-329. [20] Guan B, Jiang GQ, Wang YX, et al. Identification of differentially expressed transcripts involved in the salt-stress response of Salsola ferganica by suppression subtractive hybridization[J]. Plant Cell Tiss Org, 2010, 103(3): 343-352. [21] 王艳, 陈西, 杨中敏, 等. 费尔干猪毛菜病程相关蛋白基因 (SfPR-1)的克隆及在盐胁迫下的表达[J]. 植物科学学报,2013, 31(2): 164-170. [22] Tanabe S, Hayashi N, Nishizawa Y, et al. Elicitor and catalase activity of conidia suspensions of various strains of Magnaporthe grisea in suspensions-cultured cells of rice[J]. Biosci Biotechnol Biochem, 2008, 72: 889-892. [23] Sahebani N, Hadavi N. Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode(M. javanica)by several chemical and microbial elicitors[J]. Biocontrol Sci Technol,2009, 19: 301-313. [24] 郭金芳, 潘俊松, 王琛. 病程相关蛋白与植物抗病性关系的研 究及其在草坪草抗病育种中的应用[J]. 草业学报, 2008, 17 (6): 156-163. [25] Hwang HJ, Kim H. Gene encoding PR-10 protein of Lithospermum erythrorhizom is responsive to exogenous stimuli related to the plant defense system[J]. Plant Sci, 2003, 165: 1297-1302. [26] Zhao SQ, Guo JB. Systemic acquired disease resistance and signal transduction in plant[J]. Aca Bot sin, 2003, 2(5): 539-548. [27] 王勇刚. 植物诱导抗病性与病程相关蛋白[J]. 湖南农业大 学学报, 2002, 28(2): 77-82 [28] Cheong JJ, Yang DD. Methyl jasmonate as vital substance in plants[J]. Trends Genet, 2003, 19(7): 409-413. [29] 蔡昆争, 董桃杏, 徐涛. 茉莉酸类物质(JAs)的生理特性及 其在逆境胁迫中的抗性作用[J]. 生态环境, 2006, 15(2): 397-404. [30] Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas[J]. FEMS Microbiol Lett, 2011,327: 1-8 [31] Inzé A, Vanderauwera S, Hoeberichts FA, et al. Subcellular localization compendium of hydrogen peroxide-induced proteins[J]. Plant Cell Environ, 2012, 35: 308-320. [32] Chen Z, Silva H. Active oxygen species and induction of plant systemic acquired resistance by SA[J]. Science, 2003, 262: 1883-1886. [33] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annu Rev Phytopathol, 2005,43: 205-227. [34] Walling LL. Adaptive defense responses to pathogens and pests Adv[J]. Bot Res, 2009, 51: 551-612. [35] Mur LAJ, Kentom P, Atzorn R. The outcomes of concentrationspecific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiol, 2006, 140: 249-262. [36] Koornneef A, Pieterse CMJ. Cross talk in defense signaling[J].Plant Physiol, 2008, 146: 839-844. [37] Lopez MA, Bannenberg G, Casterana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival[J]. Curr Opin Plant Biol, 2008, 11: 420-427. [38] Li ZT, Dhekney SA, Gray DJ. PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco[J]. Plant Cell Rep, 2011, 30: 1-11. [39] Hon WC, Griffith M, Mlynarz A, et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins[J]. Plant Physiol,1995, 109: 879-889. [40] Broekaert WF, Terras FRG, Cammue BPA. Induced and performed antimicrobial protein[C] //Slusarenko AJ, Fraser RSS, van Loon LC. Mechanisms of resisitance to plant diseases. Dordrecht: Kluwer Academic Publishers, 2000, 371-477. [41] Zeier J, Delledonne M, Mishina T, et al. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions[J].Plant Physiol, 2004, 136, 2875-2886. [42] Griffith M, Yaish WF. Antifreeze proteins in overwintering plants: a tale of two activities[J]. Trends Plant Sci, 2004, 9: 399-405. [43] Liu B, Zhang SH, Zhu XY, et al. Candidate defense genes as predictors of quantitative blast resistance in rice[J]. Mol Plant- Microbe Interact, 2004, 17: 1146-1152. [44] Seo PJ, Lee AK, Xiang FN. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination[J]. Plant Cell Physiol, 2008,39(3): 334-344. [45] Ghanta S, Bhattacharyya D, Sinha R, et al. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway[J]. Planta,2011, 233: 895-910. [46] Sharma R, Vleesschauwer DD, Manoj K, et al. Recent advances in dissecting stress regulatory crosstalk in rice[J]. Mol Plant, 2013,6(2): 250-260. |