生物技术通报 ›› 2014, Vol. 0 ›› Issue (11): 14-23.
高丽
收稿日期:
2014-03-07
出版日期:
2014-11-07
发布日期:
2014-11-07
作者简介:
高丽,女,博士,讲师,研究方向:植物发育分子生物学
基金资助:
Gao Li
Received:
2014-03-07
Published:
2014-11-07
Online:
2014-11-07
摘要: 动物中存在众多多肽信号分子,它们在信号转导方面发挥重要作用。近几年,对植物中多肽信号分子的研究取得了重大突破,它们积极参与调控植物生长发育的众多过程,同时也表明多肽信号分子在细胞之间的“交流”过程中发挥作用在进化上是保守的。CLE(CLAVATA3/EMBRYO SURROUNDING REGION)家族是目前植物领域研究较热的多肽信号分子家族,通过对拟南芥CLV3和百日草TDIF等CLE多肽信号分子的研究发现,CLE蛋白在成为有功能活性的信号分子之前,存在翻译后蛋白剪切和修饰的过程,这方面与动物中多肽信使的成熟过程相似。对CLE家族成员的分子特征、生物学功能、翻译后的加工修饰和研究中出现的问题进行综述,并对本领域未来的发展方向作出展望。
高丽. 植物多肽信号分子CLE家族[J]. 生物技术通报, 2014, 0(11): 14-23.
Gao Li. CLE Peptide Signaling Molecules in Plants[J]. Biotechnology Bulletin, 2014, 0(11): 14-23.
[1]Bliss M. The discovery of insulin[M]. Chicago:University of Chicago Press, 1982. [2]Brivanlou AH, Darnell JE. Signal transduction and the control of gene expression[J]. Science, 2002, 295(5556):813-818. [3]Todorovica V, Jurukovskia V, Chena Y, et al. Latent TGF- β binding proteins[J]. Int J Biochem Cell Biol, 2005, 37(1):38-41. [4]Gaspar TH, Kevers C, Faivre-Rampant O, et al. Changing concepts in plant hormone action[J]. In Vitro Cell Dev Biol Plant, 2003, 39(2):85-106. [5]Pearce G, Strydom D, Johnson S, et al. A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes[J]. Science, 1991, 253(5022):895-898. [6]Matsubayashi Y, Sakagami Y. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L[J]. Proc Natl Acad Sci USA, 1996, 93(15):7623-7627. [7]Casson SA, Chilley PM, Topping JE, et al. The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning[J]. Plant Cell, 2002, 14(8):1705-1721. [8]Butenko MA, Patterson SE, Grini PE, et al. INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants[J]. Plant Cell, 2003, 15(10):2296-2307. [9]Narita NN, Moore S, Horiguchi G, et al. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana[J]. Plant J, 2004, 38(4):699-713. [10]Strabala TJ, O'Donnell PJ, Smit AM, et al. Gain-of-function phenotypes for many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain[J]. Plant Physiol, 2006, 140(4):1331-1344. [11]Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristem[J]. Science, 1999, 283(5409):1911-1914. [12]Opsahl-Ferstad HG, Le Deunff E, Dumas C, et al. ZmEsr, a novel endosperm-specific gene expressed in restricted region around the maize embryo[J]. Plant J, 1997, 12(1):235-246. [13]Chu H, Qian Q, Liang W, et al. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice[J]. Plant Physiol, 2006, 142(3):1039-1052. [14]Cock JM, Mccormick S. A large family of genes that share homology with CLAVATA3[J]. Plant Physiol, 2001, 126:939-942. [15]Kondo T, Sawa S, Kinoshita A, et al. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis[J]. Science, 2006, 313:845-848. [16]Bowers JE, Chapman BA, Rong JK, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003, 422(6930):433-438. [17]Sharma VK, Ramirez J, Fletcher JC. The Arabidopsis CLV3-like(CLE)genes are expressed in diverse tissues and encode secreted proteins[J]. Plant Mol Biol, 2003, 51(3):415-425. [18]Ito Y, Nakanomyo I, Motose H, et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation[J]. Science, 2006, 313(5788):842-845. [19]Fiers M, Golemiec E, Xu J, et al. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway[J]. Plant Cell, 2005, 17:2542-2553. [20]Ni J, Clark SE. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain[J]. Plant Physiol, 2006, 140(2):726-733. [21]Durbak AR, Tax FE. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristem[J]. Genetics, 2011, 189:177-194. [22]Yadav RK, Reddy GV. WUSCHEL protein movement and stem cell homeostasis[J]. Plant Signal Behav, 2012, 7(5):592-594. [23] Jonsson H, Heisler M, Reddy GV, et al. Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem[J]. Bioinformatics, 2005, 21(Suppl. 1):i232-i240. [24]Müller R, Borghi L, Kwiatkowska D, et al. Dynamic and compensa-tory responses of Arabidopsis shoot and floral meristem to CLV3 sig-naling[J]. The Plant Cell, 2006, 18:1188-1198. [25]Yadav RK, Perales M, Gruel J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes Dev, 2011, 25:2025-2030. [26]Deyoung BJ, Bickle KL, Schrage KJ, et al. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis[J]. Plant J, 2006, 45:1-16. [27]Guo YF, Han LQ, Hymes M, et al. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification[J]. Plant J, 2010, 63(6):889-900. [28]Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1[J]. Plant Cell, 2008, 20(4):934-946. [29]Zhu YF, Wang YQ, Li R, et al. Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis[J]. Plant J, 2010, 61:223-233. [30]Kinoshita A, Betsuyaku S, Osakabe Y, et al. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis[J]. Development, 2010, 137(2):3911-3920. [31]Stone JM, Trotochaud AE, Walker JC, et al. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions[J]. Plant Physiol, 1998, 117(4):1217-1225. [32]Yu LP, Miller AK, Clark SE. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems[J]. Curr Biol, 2003, 13:179-188. [33]Song SK, Lee MM, Clark SE. POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells[J]. Development, 2006, 133:4691-4698. [34]Trotochaud AE, Hao T, Wu G, et al. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein[J]. Plant Cell, 1999, 11(3):393-406. [35]Betsuyaku S, Takahashi F, Kinoshita A, et al. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis[J]. Plant Cell Physiol, 2011, 52(1):14-29. [36]Gish LA, Gagne JM, Brody LH, et al. WUSCHEL-responsive At5g65480 interacts with CLAVATA components in vitro and in transient expression[J]. PLoS One, 2013, 8(6):e66345. [37]Yadav RK, Perales M, Gruel J, et al. Plant stem cell maintenance involves direct transcriptional repression of differentiation program[J]. Mol Syst Biol, 2013, 9:654. [38]Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1[J]. Development, 2004, 131(22):5649-5657. [39]Kim C, Jeong DH, An G. Molecular cloning and characterization of OsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa[J]. Plant Sci, 2000, 152:17-26. [40]Hobe M, Müller R, Grünewald M, et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis[J]. Dev Genes Evol, 2003, 213(8):371-381. [41]Stahl Y, Wink RH, Ingram GC, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Curr Biol, 2009, 19(11):909-914. [42]Chu HW, Liang WQ, Li J, et al. A CLE-WOX signaling module regulates root meristem maintenance and vascular tissue developm-ent in rice[J]. J Exper Botany, 2013, 64(17):5359-5369. [43]Fiers M, Hause G, Boutilier K, et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem[J]. Gene, 2004, 327(1):37-49. [44]Wang GD, Long YC, Thomma BP, et al. Functional analyses of the CLAVATA2-like proteins and their domains that contribute to CALVATA2 specificity[J]. Plant Physiol, 2010, 152(1):320-331. [45]Jun J, Fiume E, Roeder AH, et al. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis[J]. Plant Physiol, 2010, 154(4):1721-1736. [46]Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division[J]. Development, 2010, 137(5):767-774. [47]Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis[J]. Plant Cell, 2010, 22(8):2618-2629. [48]Qiang Y, Wu JB, Han HB, et al. CLE peptides in vascular development[J]. J Integrative Plant Biol, 2013, 55(4):389-394. [49]Wang JH, Kucukoglu M, Zhang LB, et al. The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway[J]. BMC Plant Biol, 2013, 13:94. [50]Fiume E, Fletcher JC. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8[J]. Plant Cell, 2012, 24(3):1000-1012. [51]Song XF, Guo P, Ren SC, et al. Antagonistic peptide technology for functional dissection of CLV3/ESR genes in Arabidopsis[J]. Plant Physiol, 2013, 161:1076-1085. [52]Bonello JF, Opsahl-Ferstad HG, Perez P, et al. Esr genes show different levels of expression in the same region of maize endosperm[J]. Gene, 2000, 246(1-2):219-227. [53]Balandín M, Royo J, Gómez E, et al. A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region[J]. Plant Mol Biol, 2005, 58(2):269-282. [54]Floyd SK, Bowman JL. The ancestral developmental tool kit of land plants[J]. Int J Plant Sci, 2007, 168(1):1-35. [55]Strabala TJ, Phillips L, West M, et al. Bioinformatic and phylogenetic analysis of CLAVATA3/EMBRYO-SURROUNDING REGION(CLE)and the CLE-LIKE signal peptide genes in the Pinophyta[J]. BMC Plant Biol, 2014, 14:47. [56] Wang X, Mitchum MG, Gao B, et al. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR(CLE)of Arabidopsis thaliana[J]. Mol Plant Pathol, 2005, 6(2):187-191. [57] Fiers M, Golemiec E, van der Schors R, et al. The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the noncons-erved flanking sequences[J]. Plant Physiol, 2006, 141(4):1284-1292. [58]Djordjevic MA, Oakes M, Wong CE, et al. Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean[J]. J Exp Bot, 2011, 62(13):4649-4659. [59]Casamitjana-Martínez E, Hofhuis HF, Xu J, et al. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance[J]. Curr Biol, 2003, 13(16):1435-1441. [60] Sawa S, Kinoshita A, Betsuyaku S, et al. A large family of genes that share homology with CLE domain in Arabidopsis and rice[J]. Plant Signal Behav, 2008, 3(5):337-339. [61] Lu SW, Chen S, Wang J, et al. Structural and functional diversity of CLAVATA3/ESR(CLE)-like genes from the potato cyst nematode Globodera rostochiensis[J]. Mol Plant Microbe Interact, 2009, 22(9):1128-1142. [62]Ohyama K, Shinohara H, Ogawa-Ohnishi M, et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana[J]. Nat Chem Biol, 2009, 5(8):578-580. [63]Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J]. Proc Natl Acad Sci USA, 2001, 98(19):10763-10768. [64]Matsumoto N, Okada K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers[J]. Genes Dev, 2001, 15(24):3355-3364. [65]Wu X, Dabi T, Weigel D. Requirement of homeobox, gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance[J]. Curr Biol, 2005, 15(5):436-440. [66]Haecker A, Gross-Hardt R, Geiges B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 2004, 131(3):657-668. [67]Yang H, Matsubayashi Y, Nakamura K, et al. Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants[J]. Proc Natl Acad Sci USA, 1999, 96(23):13560-13565. [68]Kondo Y, Hirakawa Y, Kieber JJ, et al. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling[J]. Plant Cell Physiol, 2011, 52(1):37-48. [69]Bidadi H, Matsuoka K, Sage-Ono K, et al. CLE6 expression recovers gibberellin deficiency to promote shoot growth in Arabidopsis[J]. Plant J, 2014, 78(2):241-252. |
[1] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[2] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[3] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[4] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[5] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[6] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
[7] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[8] | 高聪, 萧楚健, 鲁帅, 王苏蓉, 袁卉华, 曹云英. 氧化石墨烯对拟南芥生长的促进作用[J]. 生物技术通报, 2022, 38(6): 120-128. |
[9] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[10] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[11] | 周娟, 阎晋东, 李新梅, 刘雪晴, 赵强, 赵小英. 拟南芥F-box蛋白FKF1与转录因子FUL互作调控开花研究[J]. 生物技术通报, 2022, 38(3): 1-8. |
[12] | 杨佳慧, 孙玉萍, 陆雅宁, 刘欢, 卢存福, 陈玉珍. 拟南芥AtTERT对大肠杆菌非生物胁迫抗性的影响[J]. 生物技术通报, 2022, 38(2): 1-9. |
[13] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
[14] | 徐子涵, 刘倩, 苗大鹏, 陈跃, 胡凤荣. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响[J]. 生物技术通报, 2021, 37(5): 28-37. |
[15] | 杨华杰, 周玉萍, 范甜, 吕天晓, 谢楚萍, 田长恩. 拟南芥IQM4互作蛋白的筛选和鉴定[J]. 生物技术通报, 2021, 37(11): 190-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||