生物技术通报 ›› 2014, Vol. 0 ›› Issue (6): 1-8.
• 综述与专论 • 下一篇
孙程, 周晓今, 陈茹梅, 范云六, 王磊
收稿日期:
2013-05-21
出版日期:
2014-06-25
发布日期:
2014-06-25
作者简介:
孙程,男,硕士研究生,研究方向:植物分子生物学与基因工程;E-mail:caas_sc@163.com
基金资助:
Sun Cheng, Zhou Xiaojin, Chen Rumei, Fan Yunliu, Wang Lei
Received:
2013-05-21
Published:
2014-06-25
Online:
2014-06-25
摘要: 茉莉酸作为重要的植物激素,在植物生长、繁殖和抗逆等诸多方面起重要的作用。茉莉酸途径的抑制因子JAZ(Jasmonate ZIM-domain,JAZ)蛋白(JAZs)是调节茉莉酸(JA)激素应答的关键因子,在没有JA存在时,JAZs抑制DNA-结合转录因子活性,从而调控JA应答基因转录;当有JA存在时,JAZs和冠菌素不敏感1(Coronatine insensitive 1,COI1)依赖JA分子发生互作,复合体被SCFCOI1识别并进入26S蛋白酶解途径降解,释放的转录因子启动JA应答基因转录。随着研究的深入,发现JAZs可以与许多转录因子互作,不仅调控了JA信号响应,还参与了其他激素信号通路。对JAZs的互作机制进行描述,阐述JAZs在植物激素调控网络中的作用。
孙程, 周晓今, 陈茹梅, 范云六, 王磊. 植物JAZ蛋白的功能概述[J]. 生物技术通报, 2014, 0(6): 1-8.
Sun Cheng, Zhou Xiaojin, Chen Rumei, Fan Yunliu, Wang Lei. Comprehensive Overview of JAZ Proteins in Plants[J]. Biotechnology Bulletin, 2014, 0(6): 1-8.
[1] Tiryaki I, Staswick PE. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1[J] . Plant Physiology, 2002, 130:887-894. [2] Pré M, Atallah M, Champion A, et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense[J] . Plant Physiology, 2008, 147:1347-1357. [3] Zhu Z, An F, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J] . Proc Natl Acad Sci USA, 2011, 108:12539-12544. [4] Adams E, Turner J. COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light[J] . Journal of Experimental Botany, 2010, 61:4373-4386. [5] Navarro L, Bari R, Achard P, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling[J] . Curr Biol, 2008, 18:650-655. [6] Hou X, Lee LYC, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J] . Developmental Cell, 2010, 19:884-894. [7] Ren C, Han C, Peng W, et al. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis[J] . Plant Physiology, 2009, 151:1412-1420. [8] Feys BJ, Benedetti CE, Penfold CN, Turner JG. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J] . The Plant Cell Online, 1994, 6:751-759. [9] Xie DX, Feys BF, James S, et al. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility[J] . Science, 1998, 280:1091-1094. [10] Turner JG, Ellis C, Devoto A. The jasmonate signal pathway[J] . The Plant Cell Online, 2002, 14:S153-S164. [11] Xu L, Liu F, Lechner E, et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J] . The Plant Cell Online, 2002, 14:1919-1935. [12] Stintzi A. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J] . Proceedings of the National Academy of Sciences, 2000, 97:10625-10630. [13] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J] . Plant J, 2006, 46:984-1008. [14] Shikata M, Matsuda Y, Ando K, et al. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family[J] . Journal of Experimental Botany, 2004, 55:631-639. [15] Derelle E, Ferraz C, Rombauts S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features[J] . Proc Natl Acad Sci USA, 2006, 103:11647-11652. [16] Vanholme B, Grunewald W, Bateman A, et al. The tify family previously known as ZIM[J] . Trends Plant Sci, 2007, 12:239-244. [17] Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J] . Genomics, 2011, 98:128-136. [18] Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk[J] . Trends Plant Sci, 2012, 17:22-31. [19] Chini A, Fonseca S, Chico JM, et al. The ZIM domain mediates homo-and heteromeric interactions between Arabidopsis JAZ proteins[J] . The Plant Journal, 2009, 59:77-87. [20] Chung HS, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J] . The Plant Cell Online, 2009, 21:131-145. [21] Pauwels L, Barbero GF, Geerinck J, et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling[J] . Nature, 2010, 464:788-791. [22] Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J] . Nature, 2007, 448:661-665. [23] Song S, Qi T, Huang H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J] . The Plant Cell Online, 2011, 23:1000-1013. [24] Grunewald W, Vanholme B, Pauwels L, et al. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin[J] . EMBO Reports, 2009, 10:923-928. [25] Berger S, Bell E, Mullet JE. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding[J] . Plant Physiology, 1996, 111:525-531. [26] Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J] . The Plant Cell Online, 2004, 16:1938-1950. [27] Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J] . Nature, 2007, 448:666-671. [28] Yan Y, Stolz S, Chételat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway[J] . Science Signaling, 2007, 19:2470. [29] Chico JM, Chini A, Fonseca S, Solano R. JAZ repressors set the rhythm in jasmonate signaling[J] . Current Opinion in Plant Biology, 2008, 3008, 11:486-494. [30] Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone[J] . Annual Review of Plant Biology, 2009, 60:183-205. [31] Figueroa P. The Arabidopsis JAZ2 promoter contains a G-box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins[J] . Plant and Cell Physiology, 2012, 53:330-343. [32] Leon J. Role of plant peroxisomes in the production of jasmonic acid-based signals[J] . Subcell Biochem,(2013,69:299-313. [33] Chung HS, Cooke TF, DePew CL, et al. Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling[J] . Plant J, 2010, 63:613-622. [34] Jiang S,Yao J,Ma KW,et al. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors[J] . PLoS Pathog,2013,9:e1003715. [35] Zhou W,Yao R,Li H,et al. New perspective on the stabilization and degradation of the F-box protein COI1 in Arabidopsis[J] . Plant Signal Behav,2013(8). pii:e24973. doi:10. 4161/psb. 24973. [36] Gimenez-Ibanez S,Boter M,Fernandez-Barbero G,et al. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis [J] . PLoS Biol,2014,12:e1001792. [37] Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J] . Nature, 2010, 468:400-405. [38] Mosblech A, Thurow C, Gatz C, et al. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana [J] . Plant J, 2011, 65:949-957. [39] Cheng Z, Sun L, Qi T, et al. The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis[J] . Molecular Plant, 2011, 4:279-288. [40] Qi T,Huang H,Wu D,et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J] . Plant Cell,2014,26:1118-1133. [41] Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis[J] . Plant Physiology, 2003, 133:1367-1375. [42] Wang W,Liu G,Niu H,et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco(Nicotiana tabacum L. cv. TN90)[J] . J Exp Bot,2014,65:2147-2160. [43] Mandaokar A, Kumar VD, Amway M, Browse J. Microarray and differential display identify genes involved in jasmonate-dependent anther development[J] . Plant Mol Biol, 2003, 52:775-786. [44] Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks[J] . The Plant Cell Online, 2002, 14:S131-S151. [45] Guo H, Ecker JR. The ethylene signaling pathway:new insights[J] . Current Opinion in Plant Biology, 2004, 7(1):40-49. [46] Gao XH, Xiao SL, Yao QF, et al. An updated GA signaling ‘relief of repression’ regulatory model[J] . Molecular Plant, 2011, 4:601-606. [47] Yang DL, Yao J, Mei CS, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J] . Proc Natl Acad Sci USA, 2012, 109:E1192-1200. [48] Hou X,Ding L,Yu H . Crosstalk between GA and JA signaling mediates plant growth and defense[J] . Plant Cell Rep,2013,32:1067-1074. [49] Acosta IF,Gasperini D,Chetelat A,et al. Role of NINJA in root jasmonate signaling[J] . Proc Natl Acad Sci USA,2013,110:15473-15478. [50] Perez AC,Goossens A. Jasmonate signalling:a copycat of auxin signalling?[J] . Plant Cell Environ,2013,36:2071-2084. [51] Moreno JE,Shyu C,Campos ML,et al. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10[j] . Plant Physiol,2013,162:1006-1017. [52] Zhu X,Zhu JK. Double repression in jasmonate-mediated plant defense[j] . Mol Cell,2013,50:459-460. [53] Ballare CL. Light regulation of plant defense[J] . Annu Rev Plant Biol,2014,65:335-363. [54] Sasaki-Sekimoto Y,Saito H,Masuda S,et al. Comprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling[J] . Plant Signal Behav,2014,9(1). pii:e27639. [Epub ahead of print] . [55] Wasternack C. Perception,signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab[J] . Plant Cell Rep,2014,33:707-718. [56] Rustioni L,Rocchi L,Guffanti E,et al Characterization of grape(Vitis vinifera L. )berry sunburn symptoms by reflectance[J] . J Agric Food Chem,2014,[Epub ahead of print] . [57] Ishiga Y,Ishiga T,Uppalapati SR,Mysore KS. Jasmonate ZIM-domain(JAZ)protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana[J] . PLoS One,2013,8:e75728. [58] Toda Y,Tanaka M,Ogawa D,et al. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J] . Plant Cell,2013,25:1709-1725. [59] Toda Y,Yoshida M,Hattori T,Takeda S. RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex[J] . Plant Signal Behav,2013,8:e26256. [60] Hakata M, Kuroda M, Ohsumi A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J] . Biosci Biotechnol Biochem, 2012, 76:2129-2134. [61] Zhu D, Cai H, Luo X, et al. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance[J] .Biochemical and Biophysical Research Communications, 2012, 426(2):273-279. [62] Oh Y, Baldwin IT, Gális I. NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants[J] .Plant Physiology, 2012, 159:769-788. [63] Oh Y, Baldwin IT, Galis I. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants[J] . PloS One, 2013, 8:e57868. [64] Dewey RE,Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum[J] . Phytochemistry,2013,94:10-27. [65] Memelink J. Regulation of gene expression by jasmonate hormones[J] . Phytochemistry, 2009, 70:1560-1570. |
[1] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[2] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[3] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[4] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[5] | 韩志玲, 陈青, 梁晓, 伍春玲, 刘迎, 伍牧锋, 徐雪莲. 二斑叶螨取食抗、感螨木薯品种对茉莉酸信号途径基因表达的影响[J]. 生物技术通报, 2022, 38(6): 211-220. |
[6] | 吕迪, 陈茹梅, 周晓今. ZmJAZ与ZmMYC2的BiFC互作研究[J]. 生物技术通报, 2022, 38(1): 77-85. |
[7] | 李治文, 刘培燕, 陈建松, 廖金铃, 林柏荣, 卓侃. 线虫效应子MgMO237及互作蛋白OsCRRSP55在水稻中的共响应基因鉴定[J]. 生物技术通报, 2021, 37(7): 88-97. |
[8] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128. |
[9] | 钟李婷, 陈秀珍, 唐云, 李俊仁, 王小兵, 刘彦婷, 周璇璇, 詹若挺, 陈立凯. 广藿香FPPS重组蛋白表达及互作蛋白筛选分析[J]. 生物技术通报, 2019, 35(12): 10-15. |
[10] | 梁东雨, 王禹佳, 苏敖纯, 徐洪伟, 周晓馥. 外源茉莉酸对牛皮杜鹃UV-B辐射缓解作用研究[J]. 生物技术通报, 2019, 35(10): 64-70. |
[11] | 窦悦, 刘美彤, 卢安娜, 吴佳洁, 王群青, 胥倩. 中介体亚基MED25调控植物激素信号转导的研究进展[J]. 生物技术通报, 2018, 34(7): 40-47. |
[12] | 熊丙全, 刘冬青, 廖相建, 郑雪莲. 茉莉酸甲酯对丹参毛状根有效成分含量的影响[J]. 生物技术通报, 2018, 34(7): 81-84. |
[13] | 李杨洋, 焦浈. 外源茉莉酸甲酯对小麦幼苗低温耐受性的影响[J]. 生物技术通报, 2018, 34(3): 87-92. |
[14] | 徐岩, 韩玉乾, 于放, 刘志文, 王燕燕. 过表达长春花JAR1基因促进文朵灵和长春质碱的生物合成[J]. 生物技术通报, 2017, 33(6): 62-68. |
[15] | 邹广平, 李雅丽, 冯梦薇, 杨修, 许智伟. 甘草悬浮细胞肉桂酸-4-羟基化酶(C4H)基因的克隆及表达分析[J]. 生物技术通报, 2017, 33(11): 96-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||