生物技术通报 ›› 2014, Vol. 0 ›› Issue (6): 14-21.
贾宏昉, 张洪映, 刘维智, 崔红, 刘国顺
收稿日期:
2013-11-03
出版日期:
2014-06-25
发布日期:
2014-06-25
作者简介:
贾宏昉,男,博士,讲师,研究方向:植物营养分子遗传;E-mail:jiahongfang@126.com
基金资助:
Jia Hongfang, Zhang Hongying, Liu Weizhi, Cui Hong, Liu Guoshun
Received:
2013-11-03
Published:
2014-06-25
Online:
2014-06-25
摘要: 硝酸盐是植物从土壤中吸收的重要无机氮素形态。植物为适应含有不同浓度NO3-的土壤环境,进化出了高亲和硝酸盐转运系统(HATS)和低亲和硝酸盐转运系统(LATS),两个基因家族NRT1和NRT2家族分别参与了LATS和HATS的NO3-的吸收和转运。近年来,随着分子生物学技术和植物基因组学的快速发展,研究人员克隆出了大量参与硝酸盐吸收和转运的基因,并对这些基因的功能进行了深入研究,逐渐形成了复杂的硝酸盐调控网络。综述了植物中硝酸盐转运蛋白基因的克隆、表达及调控,并对进一步的研究作了展望,这些结果对于理解植物硝酸盐吸收的调控机制具有重要作用。
贾宏昉, 张洪映, 刘维智, 崔红, 刘国顺. 高等植物硝酸盐转运蛋白的功能及其调控机制[J]. 生物技术通报, 2014, 0(6): 14-21.
Jia Hongfang, Zhang Hongying, Liu Weizhi, Cui Hong, Liu Guoshun. Function and Regulation Mechanisms of Nitrate Transporters in Higher Plants[J]. Biotechnology Bulletin, 2014, 0(6): 14-21.
[1] Singh B, Sekhon GS. Agriculture and enviroment[M] . New York:Marcel Dekker, 1990:357-398. [2] Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate[J] . Trends in Plant Science, 2012, 17(8):458-467. [3] Guo FQ, Yong J, Crawford NM. The nitrate transporter AtNRT1.1(CHL1)functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J] . Plant Cell, 2003, 15(1):107-118. [4] Ho CH, Lin SH, Hu H, et al. CHL1 functions as a nitrate sensor in plants[J] . Cell, 2009, 138(11):1184-1194. [5] Forde BG. Nitrate transporters in plants:structure, function and regulation[J] . Biochimica Biophysica Acta, 2000, 1465(12):219-235. [6] Williams LE, Miller AJ. Transporters responsible for the uptake and partitioning of nitrogenous solutes[J] . Annu Rev Plant Physiol Plant Mol Biol, 2001, 52(1):659-688. [7] Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate[J] . Trends Plant Sci, 2012, 17(8):458-467. [8] Liu KH, Huang CY, Tsay YF. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J] . Plant Cell, 1999, 11(5):865-874. [9] Huang NC, Liu KH, Lo HJ, et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J] . Plant Cell, 1999, 11(8):1381-1392. [10] Chiu CC, LIN CS, Hsia AP, et al. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development[J] . Plant Cell and Physiology, 2004, 45(9):1139-1148. [11] Lin SH, Kuo HF, Canivenc G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J] . Plant Cell, 2008, 20(9):2514-2528. [12] Li JY, Fu YL, Pike SM, et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J] . Plant Cell, 2010, 22(3):1633-1646. [13] Almagro A, Lin SH, Tsay YF. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J] . Plant Cell, 2008, 20(12):3289-3299. [14] Fan SC, Lin CS, Hsu PK, et al. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J] . Plant Cell, 2009, 21(5):2750-2761. [15] Wang YY, Tsay YF. Arabidopsis nitrate transporter NRT 1.9 is important in phloem nitrate transport[J] . Plant Cell, 2011, 23(5):1945-1957. [16] Araki R, Hasegawa H. Expression of rice(Oryza sativa L.)genes involved in high-affinity nitrate transport during the period of nitrate induction[J] . Breeding Science, 2006, 56(1):295-302. [17] Liu KH, Huang CY, Tsay YF. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J] . Plant Cell, 1999, 11(5):865-874. [18] Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J] . EMBO J, 2003, 22(5):1005-1013. [19] Morère-Le, Paven MC, Viau L, Hamon A, et al. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula[J] . J Exp Bot, 2011, 62(15):5595-5605. [20] Unkles SE, Hawker KL, Grieve C, et al. CrnAencodes a nitrate transporter in Aspergillus nidulans[J] . Proc Natl Acad Sci USA, 1991, 88(1):204-208. [21] McClure PE, Kochian LV, Spanswick RM, et al. Evidence for cotransport of nitrate and protons in maize roots[J] . Plant Physiology, 1990, 93(1):281-289. [22] Zhou JJ, Trueman LJ, Boorer KJ, et al. A high-affinity fungal nitrate carrier with two transport mechanisms[J] . J Biol Chem, 2000, 275(51):39894-39899. [23] Quesada A, Galvan A, Fernandez E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii[J] . Plant Journal, 1994, 5(3):407-419. [24] Sakamoto T, Inoue SK, Bryant DA. A novel nitrate/nitrite permease in the marine Cyanobacterium synechococcus sp. strain PCC7002 [J] . Journal Bacteriol, 1999, 181(23):7363-7372. [25] Trueman LJ, Richardson A, Forde BG. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlam-ydomonas reinhardtii[J] . Gene, 1996, 175(1-2):223-231. [26] Yan M, Fan XR, Feng HM, et al. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J] . Plant Cell and Environment, 2011, 34(8):1360-1372. [27] Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency[J] . Annu Rev Plant Biol, 2012, 63(1):153-82. [28] Tang Z, Fan XR, Li Q, et al. Knock down of a rice stellar nitrate transporter alters long distance translocation but not root influx[J] . Plant Physiology, 2012, 160(4):2052-2063. [29] Zhou JJ, Fernandez E, Galvan A, et al. A high affinity nitrate transport system from Chlamydomonas requires two gene products[J] . FEBS Letter, 2000, 466(2-3):225-227. [30] Tong YP, Zhou JJ, Li ZS, et al. A two-component high-affinity nitrate uptake system in barley[J] . Plant J, 2005, 41(3):442-450. [31] Orsel M, Chopin F, Leleu O, et al. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction[J] . Plant Physiology, 2006, 142(3):1304-1317. [32] Ishikawa S, Ito Y, Sato Y, et al. Two-component high-affinity nitrate transport system in barley:membrane localization, protein expression in roots and a direct protein-protein interaction[J] . Plant Biotech, 2009, 26(2):197-205. [33] Yong Z, Kotur Z, Glass ADM. Two-component high-affinity nitrate transport system in barley:membrane localization, protein expression in roots and a direct protein-protein interaction[J] . Plant Journal, 2010, 63(2):739-748. [34] Kotur Z, Mackenzie N, Ramesh S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J] . New Phytologist, 2012, 194(3):724-31. [35] Guo FQ, Wang RC, Chen MS, et al. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1)is activated and functions in nascent organ development during vegetative and reproductive growth[J] . Plant Cell, 2001, 13(8):1761-1778. [36] Mu?os S, Cazettes C, Fizames C, et al. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1[J] . Plant Cell, 2004, 16(9):2433-2447. [37] Li JY, Fu YL, Pike SM, et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J] . Plant Cell, 2010, 22(5):1633-1646. [38] Zhang HM, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J] . Science, 1998, 279(5349):407-409. [39] Little DY, Rao H, Oliva S, et al. The putative high-affinity nitate transporter NRT2.1 represses lateral root initiation in response to nutritional cues[J] . Proc Natl Acad Sci USA, 2005, 102(38):13693-13698. [40] Remans T, Nacry P, Pervent M, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J] . Plant Physiology, 2006, 140(3):909-921. [41] Filleur S, Daniel VF. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display[J] . Planta, 1999, 207(3):461-469. [42] Vidmar JJ, Zhuo D, Siddiqi MY, et al. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley[J] . Plant Physiology, 2000, 123(1):307-318. [43] Laugier E, Bouguyon E, Mauries A, et al. Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system[J] . Plant Physiology, 2012, 158(2):1067-1078. [44] Zhou JJ, Theodoulou FL, Muldin I, et al. Cloning and functional characterization of a Brassica napus transporter which is able to transport nitrate and histidine[J] . Journal of Biological Chemistry, 1998, 273(20):12017-12023. [45] Lejay L, Tillard P, Lepetit M, et al. Molecular and functional regulation of two NO3- uptake systems by N and C status of Arabidopsis plants[J] . Plant Journal, 1999, 18(5):509-519. [46] Liu KH, Tsay YF. Switching between the two actions modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J] . EMBO Journal, 2003, 22(5):1005-1013. [47] Huang NC, Chiang CS, Crawford, et al. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots[J] . Plant Cell, 1996, 8(12):2183-2191. [48] Lejay L, Wirth J, Pervent M, et al. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis[J] . Plant Physiology, 2008, 146(4):2036-2053. [49] Okamoto M, Vidmar JJ, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:Responses to nitrate provision[J] . Plant Cell Physiology, 2003, 44(3):304-317. [50] Girin T, Lejay L, Wirth J, et al. Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant[J] . Plant Cell and Environment, 2007, 30(11):1366-1380. [51] Wirth J, Chopin F, Santoni V, et al. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana[J] . J Biol Chem, 2007, 282(1):23541-23552. [52] Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression[J] . Plant Physiology, 2002, 129(2):886-896. [53] Kiba T, Feria-Bourrellier A, Lafouge F, et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J] . Plant Cell, 2012, 24(1):245-258. [54] Pourtau N, Jennings R, Pelzer E, et al. Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis[J] . Planta, 2006, 224(3):556-568. [55] Trevisan S, Borsa P, Botton A, et al. Expression of two maize putative nitrate transporters in response to nitrate and sugar availability[J] . Plant Biology, 2008, 10(4):462-475. [56] Feng HM, Yan M, Fan XR, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J] . J Exp Bot, 2011, 62(7):2319-2332. [57] Rastogi R, Bate NJ, Sivasankar S, et al. Foot printing of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants[J] . Plant Molecular Biology, 1997, 34(3):465-476. [58] Konishi M, Yanagisawa S. Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response[J] . Plant Journal, 2010, 63(2):269-282. [59] Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi[J] . Microbiology and Molecular Biology Reviews, 1997, 61(1):17-32. |
[1] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[2] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[3] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[4] | 孙曼銮, 葛赛, 卜佳, 朱壮彦. 大肠杆菌核糖核酸酶调控机制研究[J]. 生物技术通报, 2022, 38(3): 234-245. |
[5] | 江迪, 徐春城. 发酵TMR应用及其微生物种群演替规律研究进展[J]. 生物技术通报, 2021, 37(9): 31-38. |
[6] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[7] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[8] | 张婵, 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根. 广藿香百秋李醇分子调控及合成生物学研究进展[J]. 生物技术通报, 2021, 37(8): 55-64. |
[9] | 钱虹萍, 陈博, 林金星, 崔亚宁. RNA聚合酶II动态调控及其成像技术的研究进展[J]. 生物技术通报, 2021, 37(4): 293-302. |
[10] | 邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉. 家禽卵泡闭锁机制的研究进展[J]. 生物技术通报, 2020, 36(4): 185-191. |
[11] | 李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157. |
[12] | 郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12): 256-264. |
[13] | 李锐, 孙祖莉, 杨贤庆, 李来好, 魏涯, 岑剑伟, 王晶, 赵永强. 代谢组学在水产品品质与安全中的研究进展[J]. 生物技术通报, 2020, 36(11): 155-163. |
[14] | 位明明, 曾霞, 安泽伟, 胡彦师, 黄肖, 李维国. C类花器官特征基因AGAMOUS(AG)调控植物花分生组织维持与终止研究进展[J]. 生物技术通报, 2020, 36(1): 135-143. |
[15] | 王世伟, 王卿惠. 解淀粉芽孢杆菌相关功能机制研究进展[J]. 生物技术通报, 2020, 36(1): 150-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||