[1] Gonzalez JE, Keshavan ND. Messing with bacterial quorum sensing[J]. Microbiol Mol Biol Rev, 2006, 70(4):859-875. [2] Laue BE, Jiang Y, Chhabra SR, et al. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase[J]. Microbiology, 2000, 146(Pt 10):2469-2480. [3] Marketon MM, Gronquist MR, Eberhard A, et al. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones[J]. J Bacteriol, 2002, 184(20):5686-5695. [4] Mcclean KH, Winson MK, Fish L, et al. Quorum sensing and Chromobacterium violaceum:exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones[J]. Microbiology, 1997, 143(Pt 12):3703-3711. [5] Schripsema J, De Rudder KE, Van Vliet TB, et al. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homos-erine lactone molecules, known as autoinducers and as quorum sens-ing co-transcription factors[J]. J Bacteriol, 1996, 178(2):366-371. [6] Shaw PD, Ping G, Daly SL, et al. Detecting and characterizing N-acyl- homoserine lactone signal molecules by thin-layer chromatography [J]. Proc Natl Acad Sci USA, 1997, 94(12):6036-6041. [7] Schuster M, Greenberg EP. A network of networks:quorum-sensing gene regulation in Pseudomonas aeruginosa[J]. Int J Med Micro-biol, 2006, 296(2-3):73-81. [8] Chhabra SR, Harty C, Hooi DS, et al. Synthetic analogues of the bacterial signal(quorum sensing)molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators[J]. J Med Chem, 2003, 46(1):97-104. [9] Gotz C, Fekete A, Gebefuegi I, et al. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley(Hord-eum vulgare)and yam bean(Pachyrhizus erosus)plants[J]. Anal Bioanal Chem, 2007, 389(5):1447-1457. [10] 宋水山. N-酰基高丝氨酸内酯介导的细菌与其真核寄主之间的信息交流[J]. 中国细胞生物学学报, 2010(2):331-335. [11] Mathesius U, Mulders S, Gao M, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals[J]. Proceedings of the National Academy of Sciences, 2003, 100(3):1444-1449. [12] Miao C, Liu F, Zhao Q, et al. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal[J]. Biochemical and Biophysical Research Communications, 2012, 427(2):293-298. [13] Liu F, Bian Z, Jia Z, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5):677-683. [14] Ortiz-Castro R, Martinez-Trujilllo M, Lopez-Bucio J. N-acyl-L-homoserine lactones:a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana[J]. Plant Cell Environ, 2008, 31(10):1497-1509. [15] Schikora A, Schenk ST, Stein E, et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6[J]. Plant Physiol, 2011, 157 (3):1407-1418. [16] Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar:computational prediction and in-vivo protein coupling[J]. Genome Biol, 2008, 9(7):R120. [17] Jin G, Liu F, Ma H, et al. Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones[J]. Biochemical and Biophysical Research Communications, 2012, 417(3):991-995. [18] Liu X, Yue Y, Li B, et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science, 2007, 315(5819):1712-1716. [19] Liu XA, Yue YL, LI B, et al. A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science, 2007, 318(5852):914. [20] Song S, Jia Z, Xu J, et al. N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells[J]. Biochemical and Biophysical Research Communications, 2011, 414(2):355-360. [21] 张哲, 张霞, 边子睿, 等. 3-羰基辛酰基高丝氨酸内酯诱导拟南芥根细胞Ca 2+ 内流[J]. 植物生理学报, 2011(9):872-878. [22] Jerabek-Willemsen M, Andr T, Wanner R, et al. MicroScale Thermophoresis:Interaction analysis and beyond[J]. Journal of Molecular Structure, 2014, doi:10.1016/j.molstruc.2014.03.009. [23] Immekus F, Barandun LJ, Betz M, et al. Launching spiking ligands into a protein-protein interface:a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme[J]. ACS Chem Biol, 2013, 8(6):1163-1178. [24] Shang X, Marchioni F, Evelyn CR, et al. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors[J]. Proc Natl Acad Sci USA, 2013, 110(8):3155-3160. [25] Pangesti N, Pineda A, Pieterse CM, et al. Two-way plant mediated interactions between root-associated microbes and insects:from ecology to mechanisms[J]. Frontiers in Plant Science, 2013, 4. [26] 赵芊, 贾振华, 宋水山. 细菌信号分子N-酰基高丝氨酸内酯调控植物抗性的研究进展[J]. 植物生理学报, 2014(2):143-149. [27] Thomanek H, Schenk ST, Stein E, et al. Modified N-acyl-homoserine lactones as chemical probes for the elucidation of plant-microbe interactions[J]. Org Biomol Chem, 2013, 11(40):6994-7003. [28] Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication:acyl-homoserine lactone quorum sensing[J]. Annu Rev Genet, 2001, 35:439-468. [29] Williams SC, Patterson EK, Carty NL, et al. Pseudomonas aerugin-osa autoinducer enters and functions in mammalian cells[J]. J Bacteriol, 2004, 186(8):2281-2287. [30] Tateda K, Ishii Y, Horikawa M, et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils[J]. Infect Immun, 2003, 71(10):5785-5793. [31] Shiner EK, Terentyev D, Bryan A, et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling[J]. Cell Microbiol, 2006, 8(10):1601-1610. [32] Rumbaugh KP. Convergence of hormones and autoinducers at the host/pathogen interface[J]. Anal Bioanal Chem, 2007, 387(2):425-435. [33] Delgado-Magnero KH, Valiente PA, Ruiz-Pena M, et al. Unraveling the binding mechanism of polyoxyethylene sorbitan esters with bovine serum albumin:a novel theoretical model based on molecular dynamic simulations[J]. Colloids Surf B Biointerfaces, 2014, 116:720-726. [34] Liu S, Guo C, Guo Y, et al. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin[J]. Iran J Pharm Res, 2014, 13(3):1019-1028. [35] Tan Y, Siebert KJ. Modeling bovine serum albumin binding of flavor compounds(alcohols, aldehydes, esters, and ketones)as a function of molecular properties[J]. J Food Sci, 2008, 73(1):S56-63. |