生物技术通报 ›› 2016, Vol. 32 ›› Issue (4): 24-33.doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.003
刘家扬1,2,焦国宝2,有小娟1,廖祥儒3,孙利鹏2
收稿日期:
2015-06-14
出版日期:
2016-04-25
发布日期:
2016-04-26
作者简介:
刘家扬,男,博士,副教授,研究方向:酶的生产及应用;Email:liujiayang5@sohu.com
基金资助:
LIU Jia-yang1,2, JIAO Guo-bao2 ,YOU Xiao-juan1 ,LIAO Xiang-ru3, SUN Li-peng2
Received:
2015-06-14
Published:
2016-04-25
Online:
2016-04-26
摘要: 作为一种含铜的多酚氧化酶,真菌漆酶比细菌漆酶、植物漆酶等具有更好的热稳定性、金属离子耐受性及更高的底物催化氧化性,在工农业及环境领域的应用中得到了较高的关注。目前普遍认为,限制漆酶广泛应用的因素在于漆酶的生产规模、成本与性质。真菌漆酶的生产模式包括固态发酵和液体发酵,工业生产基本以液体发酵为主。除了在染料脱色、染织废水处理、纸浆漂白等过程中的应用,最新的研究不断拓展了漆酶新的用途,对近年来真菌漆酶的发酵生产、酶学性质及应用研究中的最新结果进行了概述。
刘家扬,焦国宝,有小娟,廖祥儒,孙利鹏. 真菌漆酶的性质、生产及应用研究进展[J]. 生物技术通报, 2016, 32(4): 24-33.
LIU Jia-yang,, JIAO Guo-bao ,YOU Xiao-juan ,LIAO Xiang-ru, SUN Li-peng. A Review on Properties,Production,and Application of Fungal Laccases[J]. Biotechnology Bulletin, 2016, 32(4): 24-33.
[1]司静, 李伟, 崔宝凯, 等. 真菌漆酶性质、分子生物学及其应用研究进展[J]. 生物技术通报, 2011(2):48-55. [2]Couto SR, Toca-Herrera JL. Laccase production at reactor scale by filamentous fungi[J]. Biotechnol Adv 2007, 25:558-569. [3]Eggert C, Temp U, Eriksson KE. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus[J]. FEBS Lett, 1997, 407:89-92. [4]魏玉莲, 戴玉成. 木材腐朽菌在森林生态系统中的功能[J]. 应用生态学报, 2004, 15:1935-1938. [5]Rodríguez Couto S, Rodríguez A, Paterson RRM, et al. Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor[J]. Lett Appl Microbial, 2006, 42:612-616. [6]Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiol Rev, 2006, 30:215-242. [7]Tien M, Kirk TK. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds[J]. Science, 1983, 221:661-663. [8]Martínez áT, Ruiz-Due?as FJ, Martínez MJ, et al. Enzymatic delignification of plant cell wall:from nature to mill[J]. Curr Opin Biotech, 2009, 20:348-357. [9]Vivekanand V, Dwivedi P, Sharma A, et al. Enhanced delignification of mixed wood pulp by Aspergillus fumigatus laccase mediator system[J]. World J Microbiol Biotechnol, 2008, 24:2799-2804. [10]Floudas D, Binder M, Riley R, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes[J]. Science, 2012, 336:1715-1719. [11]Arora DS, Gill PK. Laccase production by some white rot fungi under different nutritional conditions[J]. Bioresour Technol, 2000, 73:283-285. [12]Bermek H, Li K, Eriksson L. Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp[J]. J Biotechnol, 1998, 66:117-124. [13]Praveen K, Viswanath B, Usha KY, et al. Lignolytic enzymes of a mushroom Stereum ostrea isolated from wood logs[J]. Enzyme Res, 2011, 2011:ID:749518. [14]Moreira S, Milagres AMF, Mussatto SI. Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea[J]. Sep Purif Technol, 2014, 135:183-189. [15]Rodgers CJ, Blanford CF, Giddens SR, et al. Designer laccases:a vogue for high-potential fungal enzymes?[J]Trends Biotechnol, 2009, 28:63-72. [16]Briving C, Gandvik EK, Nyman PO. Structural studies around cysteine and cystine residues in the “blue” oxidase fungal laccase B. Similarity in amino acid sequence with ceruloplasmin[J]. Biochem Bioph Res Commun, 1980, 93:454-461. [17]Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences[J]. FEBS J, 2006, 273:2308-2326. [18]Chernykh A, Myasoedova N, Kolomytseva M, et al. Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833[j]. J Appl Microbiol, 2008, 105:2065-2075. [19]Wang ZX, Cai YJ, Liao XR, et al. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1[J]. Proc Biochem, 2010, 45:1720-1729. [20]Yano A, Kikuchi S, Nakagawa Y, et al. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae[J]. Microbiol Res, 2009, 164:642-649. [21]Cantarella G, d’Acunzo F, Galli C. Determination of laccase activity in mixed solvents:comparison between two chromogens in a spectrophotometric assay[J]. Biotech Bioeng, 2003, 82:395-398. [22]Carunchio F, Crescenzi C, Girelli AM, et al. Oxidation of ferulic acid by laccase:identification of the products and inhibitory effects of some dipeptides[J]. Talanta, 2001, 55:189-200. [23]Bose S, Mazumder S, Mukherjee M. Laccase production by the white-rot fungus Termitomyces clypeatus[J]. J Basic Microb, 2007, 47:127-131. [24]Badiani M, Felici M, Luna M, et al. Laccase assay by means of high-performance liquid chromatography[J]. Anal Biochem, 1983, 133:275-276. [25]Kahraman S, Yesilada O. Industrial and agricultural wastes as substrates for laccase production by white-rot fungi[J]. Folia Microbiol, 2001, 46:133-136. [26]Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes[J]. J Biotechnol, 2009, 144:37-42. [27]Que Y, Sun S, Xu L, et al. High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor[J]. Food Chem, 2014, 159:208-213. [28]Liu J, Cai Y, Liao X, et al. Purification and Characterization of a novel thermal stable laccase from Pycnoporus sp. SYBC-L3 and its use in dye decolorization[J]. Biol Environ, 2012, 113:1-13. [29]Yan J, Chen D, Yang E, et al. Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization[J]. Int Biodeter Biodegr, 2014, 93:186-194. [30]Marbach I, Harel E, Mayer AM. Molecular properties of extracellular Botrytis cinerea laccase[J]. Phytochemistry, 1984, 23:2713-2717. [31]de la Rubia T, Ruiz E, Perez J, et al. Properties of a laccase produced by Phanerochaete flavido-alba induced by vanillin[J]. Arch Microbiol, 2002, 179:70-73. [32]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation[J]. FEMS Microbiol Rev, 1994, 13:125-135. [33]Kurtz MB, Champe SP. Purification and characterization of the conidial laccase of Aspergillus nidulans[J]. J Bacteriol, 1982, 151:1338-1345. [34]Klonowska A, Gaudin C, Fournel A, et al. Characterization of a low redox potential laccase from the basidiomycete C30[J]. Eur J Biochem, 2002, 269:6119-6125. [35] Haibo Z, Yinglong Z, Feng H, et al. Purification and characterizati-on of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta[J]. Biotechnol Lett, 2009, 31:837-843. [36]Kim Y, Yeo S, Kim MK, et al. Removal of estrogenic activity from endocrine-disrupting chemicals by purified laccase of Phlebia tremellosa[J]. FEMS Microbiol Lett, 2008, 284:172-175. [37]Eggert C, Temp U, Eriksson K. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus:purification and characterization of the laccase[J]. Appl Environ Microbiol, 1996, 62:1151-1158. [38]Hsu CA, Wen TN, Su YC, et al. Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp.[J]. Environ Sci Technol, 2012, 46:5109-5117. [39]Abadulla E, Tzanov T, Costa S, et al. Decolorization and detoxific-ation of textile dyes with a laccase from Trametes hirsuta[J]. Appl Environ Microbiol, 2000, 66:3357-3362. [40]Lu L, Zhao M, Zhang BB, et al. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme[J]. Appl Microbiol Biotechnol, 2007, 74:1232-1239. [41]Kurniawati S, Nicell JA. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol[J]. Bioresour Technol, 2008, 99:7825-7834. [42]Couto SR, Sanromán Má. The effect of violuric acid on the decolou-rization of recalcitrant dyes by laccase from Trametes hirsuta[J]. Dyes Pigments, 2007, 74:123-126. [43]Aktas N, Cicek H, Unal AT, et al. Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol[J]. Bioresour Technol, 2001, 80:29-36. [44]Aktas N, Sahiner N, Kantoglu O, et al. Biosynthesis and characterization of laccase catalyzed poly(catechol)[J]. J Polym Environ, 2003, 11:123-128. [45]Alcantara T, Gomez J, Pazos M, et al. Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor[J]. World J Microbiol Biotechnol, 2007, 23:1189-1194. [46]Call HP, Mücke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems(Lignozym?-process)[J]. J Biotechnol, 1997, 53:163-202. [47]Brogioni B, Biglino D, Sinicropi A, et al. Characterization of radical intermediates in laccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation[J]. Physical Chemistry Chemical Physics, 2008, 10:7284-7292. [48]Bertrand T, Jolivalt C, Briozzo P, et al. Crystal structure of a four-copper laccase complexed with an arylamine:insights into substrate recognition and correlation with kinetics[J]. Biochemistry, 2002, 41:7325-7333. [49]Liu J, Cai Y, Liao X, et al. Efficiency of laccase production in a 65-liter air-lift reactor for potential green industrial and environmental application[J]. J Clean Prod, 2013, 39:154-160. [50]司静, 崔宝凯, 戴玉成. 栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化[J]. 微生物学通报, 2011, 38:405-416. [51]Quaratino D, Ciaffi M, Federici E, et al. Response surface methodology study of laccase production in Panus tigrinus liquid cultures[J]. Biochem Eng J, 2008, 39:236-245. [52]Cambria M, Ragusa S, Calabrese V, et al. Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds[J]. Appl Biochem Biotechnol, 2010, 163(3):415-422. [53]Liu L, Lin Z, Zheng T, et al. Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969[J]. Enzyme Microb Technol, 2009, 44:426-433. [54]Liu J, Wang ML, Tonnis B, et al. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production[J]. Bioresour Technol, 2013, 135:39-45. [55]D’Souza-Ticlo D, Sharma D, Raghukumar C. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus[J]. Mar Biotechnol, 2009, 11:725-737. [56]Wang F, Hu JH, Guo C, et al. Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer[J]. Bioresour Technol, 2014, 166:602-605. [57]Thurston CF. The structure and function of fungal laccases[J]. Microbiology, 1994, 140:19-26. [58]Pointing SB, Jones EBG, Vrijmoed LLP. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture[J]. Mycologia, 2000, 92:139-144. [59]Fenice M, Giovannozzi Sermanni G, Federici F, et al. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media[J]. J Biotechnol, 2003, 100:77-85. [60]Meza JC, Auria R, Lomascolo A, et al. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3[J]. Enzyme Microb Technol, 2007, 41:162-168. [61]Kuhar F, Papinutti L. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers[J]. Revista Argentina de Microbiología, 2014, 46:144-149. [62]Jamroz T, Sencio B, Ledakowicz S. Efficiency of laccase biosynthesis in various types of fermenters[J]. J Biotechnol, 2007, 131S:S161. [63]Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper[J]. Appl Microbiol Biotechnol, 2001, 56:225-232. [64]Galhaup C, Wagner H, Hinterstoisser B, et al. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens[J]. Enzyme Microb Technol, 2002, 30:529-536. [65]Sharma A, Thakur VV, Shrivastava A, et al. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen(AOX)in bleach effluents:A pilot scale study[J]. Bioresour Technol, 2014, 169:96-102. [66]Eugenio ME, Santos SM, Carbajo JM, et al. Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus[J]. Bioresour Technol, 2010, 101:1866-1870. [67]Alberts JF, Gelderblom WCA, Botha A, et al. Degradation of aflatoxin B1 by fungal laccase enzymes[]J[. Int J Food Microbiol, 2009, 135:47-52. [68]Godoy-Navajas J, Aguilar-Caballos MP, Gómez-Hens A. Automatic determination of polyphenols in wines using laccase and terbium oxide nanoparticles[J]. Food Chem, 2015, 166:29-34. [69]袁海生, 戴玉成, 曹云, 等. 白腐真菌染料脱色菌株筛选及一色齿毛菌脱色条件的研究[J]. 菌物学报, 2010, 29:429-436. [70]Misra N, Kumar V, Goel NK, et al. Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye[J]. Polymer, 2014, 55:6017-6024. [71]司静, 崔宝凯, 戴玉成. 东方栓孔菌在染料脱色中的应用及其脱色条件的优化[J]. 基因组学与应用生物学, 2011, 30:364-371. [72]Liu J, Cai Y, Liao X, et al. Simultaneous laccase production and color removal by culturing fungus Pycnoporus sp. SYBC-L3 in a textile wastewater effluent supplemented with a lignocellulosic waste Phragmites australis[J]. Bull Environ Contam Toxicol, 2012, 89:269-273. [73]司静, 崔宝凯, 贺帅, 等. 微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J]. 应用与环境生物学报, 2011, 26:130-137. [74]Auriol M, Filali-Meknassi Y, Adams CD, et al. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater:efficiency of horseradish peroxidase and laccase from Trametes versicolor[J]. Chemosphere, 2008, 70:445-452. [75]Canfora L, Iamarino G, Rao MA, et al. Oxidative transformation of natural and synthetic phenolic mixtures by Trametes versicolor laccase[J]. J Agric Food Chem, 2008, 56:1398-1407. [76]Shi L, Ma F, Han Y, et al. Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators[J]. J Hazard Mater, 2014, 279:203-211. [77]Polak J, Jarosz-Wilkolazka A. Whole-cell fungal transformation of precursors into dyes[J]. Microb Cell Fact, 2010, 9:51. [78]López J, Alonso-Omlin EM, Hernández-Alcántara JM, et al. Novel photoluminescent material by laccase-mediated polymerization of 4-fluoroguaiacol throughout defluorination[J]. J Mol Catal B Enzym, 2014, 109:70-75. [79]Gazme B, Madadlou A. Fabrication of whey protein-pectin conjugate particles through laccase-induced gelation of microemulsified nanodroplets[J]. Food Hydrocolloids, 2014, 40:189-195. [80]Zhang GQ, Wang YF, Zhang XQ, et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima[J]. Proc Biochem, 2010, 45:627-633. [81]Kunamneni A, Camarero S, Garcia-Burgos C, et al. Engineering and applications of fungal laccases for organic synthesis[J]. Microb Cell Fact, 2008, 7:32. [82]Liu J, Zeng L, Carrow RN, et al. Novel approach for alleviation of soil water repellency using a crude enzyme extract from fungal pretreatment of switchgrass[J]. Soil Res, 2013, 51:322-329. [83]Zeng L, Liu J, Carrow RN, et al. Evaluation of direct application of enzymes to remediate soil water repellency[J]. HortScience, 2014, 49:662-666. [84]Sidhu SS, Huang Q, Carrow RN, et al. Use of fungal laccases to facilitate biodethatching:a new approach[J]. HortScience, 2012, 47:1536-1542. [85]Sidhu SS, Huang Q, Carrow RN, et al. Efficacy of fungal laccase to facilitate biodethatching in Bermudagrass and Zoysiagrass[J]. Agronomy Journal, 2013, 105:1247-1252. |
[1] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[2] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[3] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[4] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[5] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[6] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[7] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[8] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[9] | 赵赛赛, 张小丹, 贾晓妍, 陶大炜, 刘可玉, 宁喜斌. 高产硝酸盐还原酶Staphylococcus simulans ZSJ6的复合诱变选育及其酶学性质研究[J]. 生物技术通报, 2023, 39(4): 103-113. |
[10] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[11] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[12] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[13] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[14] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[15] | 王松, 简晓平, 潘婉舒, 张永光, 王涛, 游玲. 玉米小曲酒糟发酵饲料对育肥猪肠道菌群的影响[J]. 生物技术通报, 2022, 38(9): 248-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||