[1] 郭晓奎, 童善庆. 细胞微生物学[M]. 上海:第二军医大学出版社, 2004:94-96. [2] Kline KA, Fälker S, Dahlberg S, et al. Bacterial adhesins in host-microbe interactions[J]. Cell Host Microbe, 2009, 6:580-592. [3] Pizarro-Cerdá J, Cossart P. Bacterial adhesion and entry into host cells[J]. Cell, 2006, 124(4):720-727. [4] Hultgren SJ, Normark S, Abraham SN. Chaperoneassisted assembly and molecular architecture of adhesive pili[J]. Annu Rev Microbiol, 1991, 45:383-415. [5] Wolfgang M, van Putten JP, Hayes SF, et al. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili[J]. EMBO J, 2000, 19(23):6408-6418. [6] Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion:The many functions of the surface proteins of Staphylococcus aureus[J]. Nat Rev Microbiol, 2014, 1:49-62. [7] Stones DH, Krachler AM. Fatal attraction:how bacterial adhesins affect host signaling and what we can learn from them[J]. Int J Mol Sci, 2015, 16(2):2626-2640. [8] Bölin I, Wolf-Watz H. Molecular cloning of the temperature-inducible outer membrane protein 1 of Yersinia pseudotuberculosis[J]. Infect Immun, 1984, 43(1):72-78. [9] Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton:functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members[J]. Annu Rev Pharmacol Toxicol, 2002, 42:283-323. [10] El Tahir Y, Skurnik M. YadA, the multifaceted Yersinia adhesion [J]. Int J Med Microbiol, 2001, 291(3):209-218. [11] Isberg RR, Barnes P. Subversion of integrins by enteropathogenic Yersinia[J]. J Cell Sci, 2001, 114(1):21-28. [12] Boyle EC, Finlay BB. Bacterial pathogenesis:exploiting cellular adherence[J]. Curr Opin Cell Biol, 2003, 15(5):633-639. [13] Pizarro-Cerdá J, et al. Entry of Listeria monocytogenes in mammalian epithelial cells:an updated view[J]. Cold Spring Harb Perspect in Med, 2012, 2(11). pii:a010009. [14] Isberg RR, Leong JM. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells[J]. Cell, 1990, 60(5):861-871. [15] Nägele V, Heesemann J, Schielke S, et al. Neisseria meningitids adhesin NadA targets β1 integrins:functional similarity to Yersinia invasin[J]. J Biol Chem, 2011, 286(23):20536-20546. [16] Hoffmann C, et al. Integrin-mediated uptake of fibronectin-binding bacteria[J]. Eur J Cell Biol, 2011, 90(11):891-896. [17] Campellone KG, Leong JM. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir[J]. Mol Microbiol, 2005, 56(2):416-432. [18] 张湘燕, 郭晓奎, 刘晶星, 等. 细菌利用宿主肌动蛋白细胞骨架进入非吞噬细胞的机制[J]. 细胞生物学杂志, 2002, 24(3):155-158. [19] Swanson JA, Baer SC. Phagocytosis by zippers and triggers[J]. Trends Cell Biol. 1995, 5(3):89-93. [20] Alva-Murillo N, López-Meza JE, Ochoa-Zarzosa A. Nonprofessional Phagocytic Cell Receptors Involved in Staphylococcus aureus Internalization[J]. Biomed Res Int, 2014, 2014:538-546. [21] Hardt WD, Chen LM, Schuebel KE, et al. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells[J]. Cell, 1998, 5:815-826. [22] Kim M, Ogawa M, Mimuro H, et al. Reinforcement of epithelial cell adhesion to basement membrane by a bacterial pathogen as a new infectious stratagem[J]. Virulence, 2010, 1(1):52-55. [23] Parsons JT, Parsons SJ. Src family protein tyrosine kinases:cooperating with growth factor and adhesion signaling pathways[J]. Curr Opin Cell Biol, 1997, 9(2):187-192. [24] Sasaki H, Nagura K, Ishino M, et al. Cloning and kinase characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion subfamily[J]. J Biol Chem, 1995, 270(36):21206-21219. [25] Lev S, Moreno H, Martinez R, et al. Protein tyrosine kinase PYK2 involved in Ca 2+ -induced regulation of ion channel and MAP kinase functions[J]. Nature, 1995, 376(6543):737-745. [26] Avraham S, London R, Fu Y, et al:Identification and characterization of a novel related adhesion focal tyrosine kinase(RAFTK)from megakaryocytes and brain[J]. J Biol Chem, 1995, 270:27742-27751. [27] Yu H, Li X, Marchetto GS, et al. Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation[J]. J Biol Chem, 1996, 271(47):29993-29998. [28] Calalb MB, et al. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity:a role for Src family kinases[J]. Mol Cell Biol, 1995, 2:954-963. [29] Schlaepfer DD, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases[J]. Mol Cell Biol, 1996, 16(10):5623-5633. [30] Burgaya F, Toutant M, Studler JM, et al. Alternatively spliced focal adhesion kinase in rat brain with increased autophosphorylation activity[J]. J Biol Chem, 1997, 272(45):28720-28725. [31] Schwartz MA, et al. Integrins:emerging paradigms of signal transduction[J]. Annu Rev Cell Dev Biol, 1995, 11:549-599. [32] Brown MC, et al. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding[J]. J Cell Biol, 1996, 135(4):1109-1123. [33] Chen HC, Appeddu PA, Parsons JT, et al. Interaction of focal adhesion kinase with cytoskeletal protein talin[J]. J Biol Chem, 1995, 270(28):16995-16999. [34] Hildebrand JD, Taylor JM, Parsons JT. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase[J]. Mol Cell Biol, 1996, 16(6):3169-3178. [35] Ohba T, Ishino M, Aoto H, et al. Interaction of two proline-rich sequences of cell adhesion kinase beta with SH3 domains of p130Cas-related proteins and a GTPase-activating protein[J]. Biochem J, 1998, 330(Pt 3):1249-1254. [36] Eto DS, Jones TA, Sundsbak JL, et al. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli[J]. PLoS Pathog, 2007, 3(7):e100. [37] Martinez JJ, Hultgren SJ. Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli[J]. Cell Microbiol, 2002, 4(1):19-28. [38] Shoelson SE, Sivaraja M, Williams KP, et al. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation[J]. EMBO J, 1993, 12(2):795-802. [39] Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton[J]. Annu Rev Physiol, 2003, 65:761-789. [40] Hartwig JH, Bokoch GM, Carpenter CL, et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets[J]. Cell, 1995, 82(4):643-653. [41] Joh D, Wann ER, Kreikemeyer B, et al. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells[J]. Matrix Biol, 1999, 18(3):211-223. [42] Dziewanowska K, Carson AR, Patti JM, et al. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins:role in internalization by epithelial cells[J]. Infect Immun, 2000, 68(11):6321-6328. [43] Agerer F, Lux S, Michel A, et al. Cellular invasion by Staphyloco-ccus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalization[J]. J Cell Sci 2005, 118:2189-2200. [44] Agerer F, Lux S, Michel A, et al. Cellular invasion by Staphyloco-ccus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation[J]. J Cell Sci, 2005, 118(10):2189-2200. [45] Martinez-Quiles N, et al. Erk/Src phospho-rylation of cortactin acts as a switch on-switch off mechanism that controls its ability to acti-vate N-WASP[J]. Mol Cell Biol, 2004, 12:5269-5280. [46] Pollard TD, Cooper JA. Actin, a central player in cell shape and movement[J]. Science, 2009, 326(5957):1208-1212. [47] Kurisu S, Takenawa T. The WASP and WAVE family proteins[J]. Genome Biol, 2009, 10(6):226. [48] Martinez-Quiles N, Ho HY, Kirschner MW, et al. Erk/Src phosphorylation of cortactin acts as a switch on switch off mechanism that controls its ability to activate N-WASP[J]. Mol Cell Biol, 2004, 24(12):5269-5280. |