[1] Modolo LV, Li L, Pan H, et al. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of(iso)flavonoids[J]. Journal of Molecular Biology, 2009, 392(5):1292-1302. [2] Gachon CM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases:the emerging functional analysis[J]. Trends in Plant Science, 2005, 10(11):542-549. [3] Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism:tranquilizers and stimulant controllers[J]. Planta, 2001, 213(2):164-174. [4] Bowles D, Isayenkova J, Lim EK, et al. Glycosyltransferases:managers of small molecules[J]. Current Opinion in Plant Biology, 2005, 8(3):254-263. [5] Cheynier V. Phenolic compounds:from plants to foods[J]. Phytochemistry Reviews, 2012, 11(2-3):153-177. [6] Lin D, Xiao M, Zhao J, et al. An Overview of plant phenolic compounds and their importance in human nutrition and management of Type 2 diabetes[J]. Molecules, 2016, 21, 1374:1-19. [7] Woo HJ, Kang HK, Nguyen TT, et al. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4:glucosylation enhancing physicoche-mical properties[J]. Enzyme and Microbial Technology, 2012, 51(6-7):311-318. [8] Raab T, Barron D, Vera FA, et al. Catechin glucosides:occurrence, synthesis, and stability[J]. Journal of Agricultural and Food Chemistry, 2010, 58(4):2138-2149. [9] Blanchard S, Thorson JS. Enzymatic tools for engineering natural product glycosylation[J]. Current Opinion in Chemical Biology, 2006, 10(3):263-271. [10] Li D, Roh SA, Shim JH, et al. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification[J]. Journal of Agricultural and Food Chemistry, 2005, 53(16):6516-6524. [11] Leadlay PF. Combinatorial approaches to polyketide biosynthesis [J]. Current Opinion in Chemical Biology, 1997, 1(2):162-168. [12] Floss HG. Antibiotic biosynthesis:from natural to unnatural compounds[J]. Journal of Industrial Microbiology & Biotechnology, 2001, 27(3):183-194. [13] Mendez C, Salas JA. Altering the glycosylation pattern of bioactive compounds[J]. Trends in Biotechnology, 2001, 19(11):449-456. [14] Fu X, Albermann C, Jiang J, et al. Antibiotic optimization via in vitro glycorandomization[J]. Nature Biotechnology, 2003, 21(12):1467-1469. [15] Yang J, Hoffmeister D, Liu L, et al. Natural product glycorandomi-zation[J]. Bioorganic & Medicinal Chemistry, 2004, 12(7):1577-1584. [16] Rupprath C, Schumacher T, Elling L. Nucleotide deoxysugars:essential tools for the glycosylation engineering of novel bioactive compounds[J]. Current Medicinal Chemistry, 2005, 12(14):1637-1675. [17] Melancon CE, 3rd, Thibodeaux CJ, et al. Glyco-stripping and glyco-swapping[J]. ACS Chemical Biology, 2006, 1(8):499-504. [18] Ma LQ, Liu BY, Gao DY, et al. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis[J]. Plant Cell Reports, 2007, 26(7):989-999. [19] Bai Y, Bi H, Zhuang Y, et al. Production of salidroside in metabolically engineered Escherichia coli[J]. Scientific Reports, 2014, 4:6640. [20] Zhang Z, Yu B, Schmidt R. Synthesis of mono- and di-O-β-d-glucopyranoside conjugates of(E)-resveratrol[J]. Synthesis, 2006, 2006(8):1301-1306. [21] Zhou M, Hamza A, Zhan CG, et al. Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors[J]. Journal of Natural Products, 2013, 76(2):279-286. [22] 田宁, 咸莫, 胡仰栋, 等. 产香叶醇重组大肠杆菌发酵培养基的优化[J]. 林产化学与工业, 2015, 35(4):131-137. [23] Gantt RW, Goff RD, Williams GJ, et al. Probing the aglycon promiscuity of an engineered glycosyltransferase[J]. Angewandte Chemie International Edition, 2008, 47:8889-8892. [24] 刘庆鑫, 李慧梁, 柳润辉, 等. 微生物转化在天然产物研究中的应用[J]. 药学实践杂志, 2012, 30(5):321-325. |