生物技术通报 ›› 2017, Vol. 33 ›› Issue (12): 12-21.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0538
刘晓威, 杨秀艳, 刘正祥, 武海雯, 张华新, 朱建峰
收稿日期:
2017-06-26
出版日期:
2017-12-25
发布日期:
2017-12-21
作者简介:
刘晓威,男,硕士研究生,研究方向:生物化学与分子生物学;E-mail:liuxiaoweicaf@163.com
基金资助:
LIU Xiao-wei, YANG Xiu-yan, LIU Zheng-xiang, WU Hai-wen, ZHANG Hua-xin, ZHU Jian-feng
Received:
2017-06-26
Published:
2017-12-25
Online:
2017-12-21
摘要: 盐胁迫是植物生长发育过程中的重要限制因子,可影响植物器官发育、形态建成、信号转导等各个环节,严重时会导致植物死亡。MicroRNA(miRNA)是一类长约19-25 nt的非编码单链RNA分子,越来越多的研究发现,在植物抵御盐胁迫过程中,miRNA可通过参与调控植物种子萌发、器官发育、形态建成、活性氧清除等过程发挥重要作用。对在植物抵御盐胁迫过程中发生响应的miRNA进行综述,旨在为植物耐盐机制研究和植物耐盐分子育种提供参考。
刘晓威, 杨秀艳, 刘正祥, 武海雯, 张华新, 朱建峰. MicroRNA在植物抵御盐胁迫过程中的作用[J]. 生物技术通报, 2017, 33(12): 12-21.
LIU Xiao-wei, YANG Xiu-yan, LIU Zheng-xiang, WU Hai-wen, ZHANG Hua-xin, ZHU Jian-feng. Role of MicroRNA in Plant Resistance to Salt Stress[J]. Biotechnology Bulletin, 2017, 33(12): 12-21.
[1] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京:科学出版社, 1993. [2]Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Res, 2013, 115(1):1-22. [3]Zhu JK. Abiotic stress signaling and response in plants[J]. Cell, 2016, 167(2):313-324. [4]张娟, 姜闯道, 平吉成. 盐胁迫对植物光合作用影响的研究进展[J]. 农业科学研究, 2008, 29(3):74-80. [5]韩志平, 张海霞, 周凤. 盐胁迫对植物的影响及植物对盐胁迫的适应性[J]. 山西大同大学学报:自然科学版, 2015, 31(3):59-64. [6]Moez H, Chantal E, Mariama N, et al. Insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Front Plant Sci, 2016, 29(7):1787-1789. [7]Niramaya S, Muchate Ganesh C, Nikalje Nilima S, et al. Plant salt stress:adaptive responses, tolerance mechanism and bioengineering for salt tolerance[J]. Botanical Review, 2016, 82(4):371-406. [8] Dietz KJ, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. Exp Bot, 2001, 52(363):1969-1980. [9]张楠楠, 徐香玲. 植物抗盐机理的研究[J]. 哈尔滨师范大学:自然科学学报, 2005, 21:65-68. [10]Ulrich D, Aaron B, Julian I. Plant salt-tolerance mechanisms[J]. Science Direct, 2014, 19(6):371-379. [11] Jia HS, Lu CM. Effects of abscisic acid on photoinhibition in maize plants[J]. Plant Sci, 2003, 165(6):1403-1410. [12] 代邹,孙永健,徐徽, 等. 多胺对盐胁迫下植物的作用[J].农业科学与技术, 2014, 3:344-351. [13] Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsi[J]. Plant Physion, 2000, 124:941-948. [14] 景昕, 张旸, 李玉花. 植物耐盐研究进展[J]. 生物技术通讯, 2010, 21(2):290-294. [15]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [16]Sunkar R, Girke T, Zhu JK. Cloning and characterization of microRNAs from rice[J]. Plant Cell, 2005, 17(5):1397-1411. [17]Ambros V. microRNAs:tiny regulators with great potential[J]. Cell, 2001, 107:823-826. [18]Dolata J, Bajczyk M, Bielewicz D, et al. Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels[J]. Plant Physiol, 2016, 172(1):297-312. [19] Zhang B, Pan X, Cobb GP, et al. Plant microRNA:a small regul-atory molecule with big impact[J]. Dev Biol, 2006, 289:3-16. [20] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. The EMBO Journal, 2004, 23(20):4051-4060. [21]Wu G. Plant MicroRNAs and development[J]. J Genet Genomics, 2013, 40:217-230. [22]Millar AA, Waterhouse PM. Plant and animal microRNAs:similarities and differences[J]. Funct Integr Genomics, 2005, 5(3):129-135. [23]Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow like miRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589):2053-2056. [24]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626. [25]Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4):513-520. [26]Fujioka Y, Utsumi M, Ohba Y, et al. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis[J]. Plant and Cell Physiol, 2007, 48(9):1243-1253. [27]Alejandra C, Jose LR. Post transcriptional gene regulation of salinity and drought responses by plant microRNAs[J]. Plant Cell & Environment, 2009, 339(4):381-389. [28] Olivier V. Origin, biogenesis, and activity of Plant MicroRNAs[J].Cell, 2009, 136(4):669-687. [29]Kong W, Zhao JJ, He LL, et al. Strategies for profiling microRNA expression[J]. Cell Physiol, 2009, 218(1):22-25. [30]Bartel DP. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. [31]Tang GL, Reinhart BJ, Zamore PD. A biochemical framework for RNA silencing in plants[J]. Genes Dev, 2003, 17:49-63. [32] Bartel B, Bartel DP. MicroRNAs:at the root of plant development[J]. Plant Physiol, 2003, 132(2):709-717. [33]Llave C, Xie ZX, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589):2053-2056. [34]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8):2001-2019. [35] Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabido-psis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662. [36] Liu B, Cao S. Loss of function OsDCL1 affects microRNAs accumulation and causes developmental defects in rice[J]. Plant Physiol, 2005, 139:296-305. [37]Park W, Chen X. Carpel F. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Bio, 2002, 12:84-95. [38]Lu X, Dun H, Lian C, et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiol Biochem, 2017, 115:418-438. [39]Laufs P, eaucelle A, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristem[J]. Development, 2004, 1:4311-4322. [40] Zhu JK. Plant salt tolerance[J]. Trends in Plant Sci, 2001, 6(2):66-71. [41]Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. [42]Naya L, Paul S, Valdes-Lopez O, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean[J]. PLoS One, 2014, 9(1):e84416. [43]Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18:2051-2065. [44]Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proc Natl Acad Sci USA, 2008, 105(2):803-808. [45]Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Curr Biol, 2005, 15(22):2038-2043. [46]Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 18(2):412-421. [47]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress induced miRNA[J]. Mol Cell, 2004, 14(6):787-799. [48]Zhao BT, Liang RQ, Ge LF, et al. Identification of drought-induced microRNAs in rice[J]. Biochem Biophys Res Commun, 2007, 354(2):585-590. [49] Wang ST, Sun XL, Yoichiro H, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.)[J]. PLoS One, 2014, 9(3):e91357. [50]Liu HH, Tian X, Li YJ. Microarray based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843. [51]Ding D, Zhang LF, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Bot, 2009, 103(1):29-38. [52] Xie FL, JR Stewart CN, Taki FA, et al. High-throughput deep sequencing shows that microRNAs play important roles in switch grass responses to drought and salinity stress[J]. Plant Biotechnol J, 2014, 12(3):354-366. [53] Yang R, Zeng Y, Yi X, et al. reveals the important role of microRNAs in the halophyte Halostachys caspica[J]. Plant Biotechnol J, 2015, 13(3):395-408. [54]Sachin AG, Birendra Prasad S. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants[J]. BMC Plant Biol, 2015, 15(1):1-18. [55]Xie FL, Wang QL, Sun RR, et al. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804. [56]马风勇, 朱永兴, 石晓霞, 等. 植物microRNA抗逆性研究进展[J]. 西北农林科技大学学报:自然科学版, 2012, 40(5):218-222. [57]Zhang BH, Pan XP. Identification and characteristic of new plant microRNAs using EST analysis[J]. Cell Eesearch, 2005, 15:336-360. [58] Singh A, Roy S, Singh S, et al. Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana[J]. Sci Rep, 2017, 7(1):3408-3412. [59]Zhu JF, Li WF, Yang WH, et al. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Rep, 2013, 32(9):1339-1349. [60]Qin Z, Chen J, Jin L, et al. Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues[J]. J Nanosci Nanotechnol, 2015, 15(2):1554-1561. [61] Shen JQ, Xie KB, Xiong LZ. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress response[J]. Mol Genet Genomics, 2010, 10:3-34. [62]Jian X, Zhang L, Li G, et al. Identification of novel stress-regulated microRNAs from Oryza sativa L.[J]. Genomics, 2010, 95:47-55. [63]Tian YH, Tian YM, Luo XJ, et al. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis[J]. BMC Plant Bio, 2014, 14:226. [64]Frazier TP, Sun G, Burklew CE, et al. Salt and drought stresses induce the aberrant expression of microRNA genes in Tobacco[J]. Mol Bio, 2011, 49(2):159-165. [65]Kazan K. Auxin and the integration of environmental signals into plant root development[J]. Annals of Bot, 2013, 112(9):1655-1665. [66]Jia XY, Wang WX, Ren LG, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J]. Plant Mol Bio, 2009, 71(1/2):51-59. [67]Dongwon B, Hyun JC, Songhwa K. A role for Arabidopsis miR399f in salt, drought, and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118. [68]Paul S, Kundu A, Pal A. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress[J]. Plant Cell Tissue and Organ Culture, 2011, 105(2):233-242. [69]Higashi Y, Takechi K, Takano H, et al. Involvement of microRNA in copper deficiency-induced repression of chloroplastic Cu-Zn-superoxide dismutase genes in the moss Physcomitrella patens[J]. Plant Cell Physiol, 2013, 54(8):1345-1355. [70] Lu S, Sun YH, Chiang VL. Stress responsive microRNAs in Populous[J]. Plant, 2008, 55(1):131-151. [71]Gharat SA, Shaw BP. Computational prediction and experimental validation of a novel miRNA in Suaeda maritima, a halophyte[J]. Genetics & Mole Res GMR, 2016, 15(1):1-12. [72] 田鑫. 拟南芥胁迫诱导microRNA的分离和功能研究及microRNA启动子分析[D]. 泰安:山东农业大学, 2009. [73]Muhammad A, Margaret YG, Ken W, et al. An insight into microRNA-156 role in salinity stress responses of Alfalfa[J]. Front Plant Sci, 2017, 8:356-359. [74] Xue T, Liu Z, Dai X, et al. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101[J]. Plant Sci, 2017, 262:182-189. [75]Gao P, Bai X, Yang L, et al. Osa-miR393:A salinity and alkaline stress-related microRNA gene[J]. Mol Biol Rep, 2010, 12:345-363. [76] Jung HJ, Kang H. Expression and functional analyses of micro-RNA417 in Arabidopsis thaliana under stress conditions[J]. Plant Physiol Biochem, 2007, 45:805-811. [77]Guo HS, Xie Q, Fei JF, et al. MicroRNA directs mRNA cleavage of the transcription factor NaCl to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17:1376-1386. [78]Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J]. Plant, 2008, 55:65-76. [79]Ma HS, Liang D, Shuai P, et al. The salt and drought inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61(14):4011-4019. [80]Liu TY, Huang TK, Tseng CY, et al. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis[J]. Plant Cell, 2012, 24:2168-2183. [81]Carlsbecker A, Lee JY, Roberts CJ, et al. Cell signal ling by microRNA165/6 directs gene does dependent root cell fate[J]. Nature, 2010, 465:316-321. [82]Sakaguchi J, Watanabe Y. miR165/166 and the development of land plants[J]. Dev Growth Differ, 2012, 54:93-99 [83]Debernardi JM, Mecchia MA, Vercruyssen L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant J, 2014, 79(3):419-426 [84]Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol, 2009, 10:29-38. [85]Luan M, Xu M, Lu Y, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 55:178-185. [86]Jung JH, Seo YH, Seo PJ, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. Plant Cell, 2007, 19:2736-2748. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[6] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[7] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[8] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[9] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[10] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[11] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[12] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[13] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[14] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[15] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||