[1] Costerton JW. Introduction to biofilm[J]. International Journal of Antimicrobial Agents, 1999, 11(3):217-221. [2] Steinberger RE, Holden PA. Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source[J]. Biofilms, 2004, 1(1):37-47. [3] Jefferson KK. What drives bacteria to produce a biofilm?[J]. FEMS Microbiology Letters, 2004, 236(2):163-173. [4] Wang Y, Dai Y, Zhang Y, et al. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa[J]. Science in China Series C:Life Sciences, 2007, 50(3):385-391. [5] Chen Y, Yan F, Chai Y, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation[J]. Environmental Microbiology, 2013, 15(3):848-864. [6] Smit G, Swart S, Lugtenberg BJJ, et al. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots[J]. Molecular Microbiology, 1992, 6(20):2897-2903. [7] Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms[J]. Microbiology and Molecular Biology Reviews, 2009, 73(2):310-347. [8] Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa[J]. Protein & Cell, 2015, 6(1):26-41. [9] Götz F. Staphylococcus and biofilms[J]. Molecular Microbiology, 2002, 43(6):1367-1378. [10] Lin H, Chen G, Long D, et al. Responses of unsaturated Pseudomonas putida CZ1 biofilms to environmental stresses in relation to the EPS composition and surface morphology[J]. World Journal of Microbiology and Biotechnology, 2014, 30(12):3081-3090. [11] Nielsen L. Novel components of Pseudomonas putida biofilm exopolymeric matrix and a transcriptome analysis of the effects of osmotic and matric stress[M]. 2010. [12] Rinaudi LV, Giordano W. An integrated view of biofilm formation in rhizobia[J]. FEMS Microbiology Letters, 2010, 304(1):1-11. [13] 丘元盛, 周淑萍, 莫小真, 等. 稻根联合固氮细菌的研究——Ⅰ. 菌种的分离和鉴定[J]. 微生物学报, 1981, 4:468-472. [14] Zhan Y, Yan Y, et al. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Sciences, 2016:201604514. [15] Yan Y, Yang J, Dou Y, et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Sciences, 2008, 105(21):7564-7569. . [16] Lim Y, Jana M, Luong TT, et al. Control of glucose-and NaCl-induced biofilm formation by rbf in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(3):722-729. [17] 陈光村. 恶臭假单胞菌CZ1非饱和生物膜耐受和累积重金属的分子机制[D]. 杭州:浙江大学, 2011. [18] O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways:a genetic analysis[J]. Molecular Microbiology, 1998, 28(3):449-461. [19] Wolters V, Joergensen RG. Microbial carbon turnover in beech forest soils at different stages of acidification[J]. Soil Biology and Biochemistry, 1991, 23(9):897-902. [20] Chaieb K, Chehab O, et al. In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains[J]. Annals of Microbiology, 2007, 57(3):431-437. [21] Zmantar T, Kouidhi B, Miladi H, et al. A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation[J]. The New Microbiologica, 2010, 33(2):137. [22] Abdallah M, Khelissa O, Ibrahim A, et al. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants[J]. International Journal of Food Microbiology, 2015, 214:38-47. [23] 陈燕飞. pH对微生物的影响[J]. 太原师范学院学报:自然科学版, 2009, 3:121-124, 131. [24] Cerca N, Jefferson KK. Effect of growth conditions on poly-N-acetyl glucosamine expression and biofilm formation in Escherichia coli[J]. FEMS Microbiology Letters, 2008, 283(1):36-41. [25] Breedveld MW, Zevenhuizen L, Zehnder AJB. Osmotically induced oligo-and polysaccharide synthesis by Rhizobium meliloti SU-47[J]. Microbiology, 1990, 136(12):2511-2519. |