[1] Lee KK, Cho HS, Moon YK, et al. Cadmium and lead uptake capa-city of energy crops and distribution of metals within the plant struc-tures[J]. KSCE Journal of Civil Engineering, 2013, 1:44-50. [2] Cheng SP. Effect of heavy metals on plants and resistance mechanism[J]. Environm Sci Pollut Res, 2003, 10:256-264. [3] Upadhyay RK. Metal stress in plants:its detoxification in natural environment[J]. Braz J Bot, 2014, 37(4):377-382. [4] Larry LB. Plants and heavy metal[M]. Molecular Science, 2012. [5] Llorens N, Arola L, Bladé C, et al. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera[J]. Plant Science, 2000, 160:159-163. [6] Fontes RLF, Cox FR. Effects of sulfur supply on soybean plants exposed to zinc toxicity[J]. J Plant Nutr, 1995, 18:1893-1906. [7] Ren FC, Liu TC, Liu H, et al. Influence of zinc on the growth, distribution of elements, and metabolism of one-year old American ginseng plants[J]. Journal of Plant Nutrition, 1993, 16:393-405. [8] DalCorso G, Farinati S, Furini A, et al. Regulatory networks of cad-mium stress in plants[J]. Plant Signal Behav, 2010, 5:663-667. [9] DalCorso G, Farinati S, Maistri S, et al. How plants cope with cadmium:staking all on metabolism and gene expression[J]. Journal of Integrative Plant Biology, 2008, 50(10):1268-1280. [10] Eun S, Yon HS, Lee Y, et al. Lead disturbs microtubule organiza-tion in the root meristem of Zea mays[J]. Physiologia Plantarum, 2000, 110:357-365. [11] Delhaize EP, Ryan PR. Aluminium toxicity and tolerance in plants[J]. Plant Physiology, 1995, 107:315-321. [12] Sanitàdi Toppi L, et al. Response to cadmium in higher plants[J]. Environment and Experimental Botany, 1999, 2:105-130. [13] Carrier P, Baryla A, et al. Cadmium distribution and microlocaliza-tion in oilseed rape(Brassica napus)after long-term growth on cadmium-contaminated soil[J]. Planta, 2003, 216:939-950. [14] Liu D, Kottke I. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy[J]. Journal of Biosciences, 2003, 28(4):471-478. [15] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta, 2001, 212:475-486. [16] Gisbert C, Ros R, Haro AD, et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J]. Biochem Biophys Res Commun, 2003, 303:440-445. [17] Senta H, Andreas W, Bogs J, et al. Phytochelatin synthase(PCS)protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. J Exp Bot, 2003, 54(389):1833-1839. [18] Clemens S, Kim EJ, Neumann D, et al. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast[J]. The EMBO Journal, 1999, 18(12):3315-3333. [19] Vatamaniuk OK, Mari S, Lu YP, et al. AtPCS1, a phytochelatin synthase from Arabidopsis:isolation and in vitro reconstitution[J]. Proc Natl Acad Sci USA, 1999, 96(12):7110-7115. [20] Gasic K, Korban S. Transgenic Indian mustard(Brassica juncea)plants expressing an Arabidopsis phytochelatin synthase(AtPCS1)exhibit enhanced As and Cd tolerance[J]. Plant Molecular Biology, 2007 64(4):361-369. [21] Christopher C, Peter G. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J]. Annual Review Plant Biology, 2002, 53:159-182. [22] Tommey AM, Shi JG, Lindsay WP, et al. Expression of the pea gene PsMT A in E. coli. Metal- binding properties of the expressed protein[J]. FEBS Letters, 1991, 292:48-52. [23] Pan A, Yang M, Tie F, et al. Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants[J]. Plant Molecular Biology, 1994, 24:341-51. [24] Robinson NJ, Tommey AM, Tuske C, et al. Plant metallothioneins[J]. The Biochemical Journal, 1993, 295:1-10. [25] An Z, Li C, Zu YG, et al. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings[J]. Journal of Experiment Botany, 2006, 57(14):3575-3582. [26] Rauser WE. Structure and function of metal chelators produced by plants:the case for organic acids, amino acids phytin and metallothioneins[J]. Cell Biochem Biophys, 1999, 31:19-48. [27] Krämer U, et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature, 1996, 379:635-638. [28] Petrov VD, Van Breasegem F. Hydrogen peroxide-a central hub for information flow in plant cells[J]. AoB Plants, 2012, 14:1-14. [29] Viehweger K. How plants cope with heavy metals[J]. Viehweger Botanical Studies, 2014, 55:1-12. [30] Lang M, Zhang Y, Chai TY, et al. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L.[J]. Gene, 2005, 363:151-158. [31] Romero-Puertas MC, Corpas FJ, Serrano MR, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J]. J Plant Physiol, 2007, 164:1346-1357. [32] Gong JM, Lee DA, Schroeder JI, et al. Long distance root-to-shoot transport of phytochelations and cadmium in Arabidopsis[J]. Proc Natl Acad Sci USA, 2003, 100(17):10118-10123. [33] Morita M, Imanaka T. Peroxisomal ABC transporters:Structure, function and role in disease[J]. Biochim Biophys Acta, 2012, 1822(9):1387-1396. [34] Martinoia E, et al. Multifunctionality of plant ABC transporters-more than just detoxifiers[J]. Planta, 2002, 214:345-355. [35] Kobae Y, Sekino T, Yoshioka H, et al. Loss of AtPDR8, a plasma membrane ABC Transporter of Arabidopsis thaliana, causes hyper-sensitive cell death upon pathogen infection[J]. Plant Cell Phy-siology, 2006, 47(3):309-318. [36] Kim DY, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J]. The Plant Journal, 2007, 50:207-218. [37] Lee M, Lee K, Lee J, et al. AtPDR12 Contributes to lead resistance in Arabidopsis[J]. Plant Physiology, 2005, 138:827-836. [38] Tobias K, Bo B, Lee Y, et al. Functions of ABC transporters in plants[J]. Essays Biochemistry, 2011, 50(1):145-160. [39] Noh B, Murphy AS, Spalding EP. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development[J]. The Plant Cell, 2001, 13:2441-2454. [40] Long Y, Li Q, Cui ZB, et al . Molecular analysis and heavy metal detoxification of ABCC1/MRP1 in zebrafish[J]. Molecular Biology Reports, 2011, 38:1703-1711. [41] Ortiz DF, Ruscitti T, McCue KF, et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein[J]. J Biol Chem, 1995, 270(9):4721-4728. [42] Wojas S, Hennig J, Plaza S, et al. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation[J]. Environm Pollut, 2009, 10:2781-2789. [43] Bhuiyan MSU, Min SR, Jeong WJ, et al. Overexpression of AtATM3 in Brassica juncea confers Enhanced heavy metal tolerance and accumulation[J]. Plant Cell Tiss Organ Cult, 2011, 107:69-77. [44] Kim DY, Bovet L, Kushnir S. AtATM3 is involved in heavy metal resistance in Arabidopsis[J]. Plant Physiol, 2006, 3:922-932. [45] Lin YF, Liang HM, Yang SY, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. New Phytologist, 2009, 182:392-404. [46] Farinati S, et al. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants[J]. New Phytologist, 2010, 185:964-978. [47] Becher M, Talke IN, Krall L, et al. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J]. The Plant Journal, 2004, 37:251-268. [48] Filatov V, Dowdle J, Smirnoff N, et al. Comparison of gene expres-sion in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation[J]. Molecular Ecology, 2006, 15:3045-3059. [49] Talke IN, Hanikenne M, Krämer U, et al. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumul-ator Arabidopsis halleri[J]. Plant Physiol, 2006, 1:148-167. [50] Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J]. Plant Physiology, 2009, 149:894-904. [51] Paulsen IT, Saier MH. A novel family of ubiquitous heavy metal ion transport proteins[J]. J Membr Biol, 1997, 156:99-103. [52] Gustin JL, et al. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants[J]. Plant J, 2009, 57:1116-1127. [53] Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 2005, 24:4041-4051. [54] Sancenón V, Puig S, Mateu-Andrés I, et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development[J]. J Biol Chem, 2004, 279:15348-15355. [55] Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9:322-330. |