[1] Smith SD, Nowak RS. Ecophysiology of plants in the intermountain lowlands[J] . Springer Berlin Heidelberg, 1990, 80:179-241.
[2] Sivakumar MVK, Das HP, Brunini O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics[J] . Climatic Change, 2005, 70(70):31-72.
[3] 褚建民. 干旱区植物的水分选择性利用研究[D] . 北京:中国林业科学院, 2007.
[4] 慈龙骏, 杨晓晖. 中国沙尘暴与荒漠化的扩展趋势[C] . 中国-欧盟荒漠化综合治理研讨会论文集, 2003.
[5] Castroluna A, Ruiz OM, Quiroga AM, et al. Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L[J] . Avances en Investigacion Agropecuaria, 2013, 18(1):39-50.
[6] 李芬, 于文金, 张建新, 等. 干旱灾害评估研究进展[J] . 地理科学进展, 2011, 30:891-898.
[7] 郑远长. 全球自然灾害概述[J] . 中国减灾, 2000, 10:14-19.
[8] 武维华. 植物生理学[M] . 北京:科学出版社, 2003.
[9] 杨小玉. 5种沙生灌木叶片解剖结构与抗旱性研究[D] . 呼和浩特:内蒙古农业大学, 2008.
[10] 梁晓婷. 兰州市干旱地区六种灌木的抗旱性研究[D] . 兰州:甘肃农业大学, 2008.
[11] 赵秀莲, 江泽平, 李慧卿, 等. 林木抗旱性鉴定研究进展[J] . 内蒙古林业科技, 2004(4):18-21, 47.
[12] 杨强胜, 唐晓蓉, 邬晓红. 林木耐旱技术研究进展[J] . 内蒙古农业科技, 2006(5):26-28.
[13] Ribaut JM, Jiang C, Gonzalez-De-Leon D, et al. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies[J] . Theoretical & Applied Genetics, 1997, 94(94):887-896.
[14] Price AH, Tomos AD. Genetic dissection of rot growth in rice(Oryza sativa L.). II:mapping quantitative trait loci using molecular markers[J] . Theoretical & Applied Genetics, 1997, 95(1-2):132-142.
[15] 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J] . 生态学报, 2014, 34(15):4223-4233.
[16] 厉广辉, 张昆, 刘风珍. 不同抗旱性花生品种的叶片形态及生理特性[J] . 中国农业科学, 2014, 47(4):644-654.
[17] Ramchander S, Robin S, Raveendran AM. Correlation analysis for Physio-morphological traits of drought resistance in advanced backcross population of rice(Oryza sativa L.)[J] . Indian Journal of Animal Nutrition, 2014, 7:2117-2122.
[18] 王怡. 三种抗旱植物叶片解剖结构的对比观察[J] . 四川林业科技, 2003, 24(1):64-67.
[19] 周洪华, 李卫红, 木巴热克·阿尤普, 等. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应[J] . 植物生态学报, 2012, 36(1):19-29.
[20] 鞠乐, 齐军仓, 贺雪, 等. 大麦种子萌发期对渗透胁迫的响应及抗旱性鉴定指标的筛选[J] . 干旱地区农业研究, 2013, 31(1):172-176,
[21] Olmo M, Lopez-Iglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species. Implications for a drier climate[J] . Plant & Soil, 2014, 384(1-2):113-129.
[22] 谭艳, 彭尽晖. 植物抗旱机理及抗旱性鉴定方法研究进展[J] . 广西农业科学, 2010, 41(5):423-426.
[23] Macdonald MT, Lada RR. Biophysical and hormonal changes linked to postharvest needle abscission in balsam fir[J] . Journal of Plant Growth Regulation, 2014, 33(3):602-611.
[24] 孙志虎, 王庆成. 应用PV 技术对北方4种阔叶树抗旱性的研究[J] . 林业科学, 2003, 39(2):3-38.
[25] 马富举, 李丹丹, 蔡剑, 等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J] . 应用生态学报, 2012, 23(3):724-730.
[26] 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J] . 应用生态学报, 2013, 24(7):1809-1816.
[27] Yin L, Wang S, Liu P, et al. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L.[J] . Plant Physiology & Biochemistry, 2014, 80C:268-277.
[28] 杨敏生, 费保华, 朱之悌, 等. 白杨双交杂种无性系抗旱性鉴定指标分析[J] . 林业科学, 2002, 38(6):36-42.
[29] 赖声渭, 曹兵. 浅谈林木抗旱性评价方法[J] . 防护林科技, 2002, 52(3):48-49.
[30] Olsson M, Alterations in linid composition, lipid peroxidation and anti-oxidative protection during senescence in drought stress plants and non-drought stressed plants of Pisum sativum[J] . Plant Physiology and Biochemistry Paris, 1995, 33(5):547-553.
[31] 李春龙. 拟南芥AtNRGAl与AtGPKl参与植物干旱胁迫响应的机理[D] . 济南:山东大学, 2014.
[32] Budak H, Kantar M, Kurtoglu KY. Drought tolerance in modern and wild wheat[J] . The Scientific World Journal, 2013:548246. doi:10.1155/2013/548246.
[33] 刘明虎, 辛智鸣, 徐军, 等. 干旱区植物叶片大小对叶表面蒸腾及叶温的影响[J] . 植物生态学报, 2013, 37(5):436-442.
[34] Comas LH, Becker SR, Cruz VM, et al. Root traits contributing to plant productivity under drought[J] . Frontiers in Plant Science, 2013, 4(2):442-442.
[35] Monneveux P, Ramirez DA, Pino MT. Drought tolerance in potato(S. tuberosum L.):Can we learn from drought tolerance research in cereals?[J] . Plant Science, 2013, (205-206):76-86.
[36] 孙宪芝, 郑成淑, 王秀峰. 木本植物抗旱机理研究进展[J] . 西北植物学报, 2007, 27(3):0629-0634.
[37] Guha A, Sengupta D, Kumar RG, et al. An integrated diagnostic approach to understand drought tolerance in mulberry(Morus indica L.)[J] . Flora-Morphology Distribution Functional Ecological Plants, 2010, 205(2):144-151.
[38] Ludlow MM, Bjorkman O. Paraheliotropic leaf movement in Siratro as a proactive mechanism against drought induced damage to primary photosynthetic reactions:damage by excessive light and heat[J] . Planta, 1984, 161(6):505-518.
[39] Poorter L, Markesteijn L. Seedling traits determine drought tolerance of tropical tree species[J] . Biotropica, 2008, 40(3):321-331.
[40] Rodriguez-Dominguez CM, Buckley TN, Egea G, et al. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor[J] . Plant Cell & Environment, 2016, 39(9):2014-2026.
[41] Duan H, O’Grady AP, Duursma RA, et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated[CO2] and temperature[J] . Tree Physiology, 2015, 35(7):1-15.
[42] 邓艳, 蒋忠诚, 曹建华, 等. 弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J] . 广西植物, 2004, 24(4):317-322.
[43] Hamanishi ET, Thomas BR, Campbell MM Drought induces alterations in the stomatal development program in Populus[J] . Journal of Experimental Botany, 2012, 63(13):4959-4971.
[44] Zhou Y, Lambrides CJ, Fukai S. Drought resistance and soil water extraction of a perennial C4 grass:contributions of root and rhizome traits[J] . Functional Plant Biology, 2014, 41(5):505-519.
[45] 齐曼·尤努斯, 木合塔尔·扎热, 塔衣尔·艾合买提. 干旱胁迫下尖果沙枣幼苗的根系活力和光合特性[J] . 应用生态学报, 2011, 22(7):1789-1795.
[46] 付士磊, 周永斌, 何兴元, 等. 干旱胁迫对杨树光合生理指标的影响[J] . 应用生态学报, 2006, 17(11):2016-2019.
[47] Carvalho RF, Campos ML, Azevedo RA. The role of phytochrome in stress tolerance[J] . Journal of integrative plant biology, 2012, 53(12):920-929.
[48] 柯世省. 干旱胁迫对夏蜡梅光合特性的影响[J] . 西北植物学报, 2007, 27(6):1209-1215.
[49] Chen Q, Tao S, Bi X, et al. Research progress in physiological and molecular biology mechanism of drought resistance in rice[J] . American Journal of Molecular Biology, 2015, 03(2):102-107.
[50] 徐兴友, 王子华, 龙茹, 等. 干旱对6 种野生花卉光合色素含量与气体交换的影响[J] . 经济林研究, 2008, 26(4):1-6.
[51] 李君, 周守标, 王春景, 等. 野生和栽培马蹄金抗旱性比较及其抗旱机制初探[J] . 植物生态学报, 2007, 1(3):521-527.
[52] Flexas J, Barbour MM, Brendel O, et al. Mesophyll diffusion conductance to CO2:An unappreciated central player in photosynthesis[J] . Plant Science, 2012, 193, 70-84.
[53] 刘红云, 梁宗锁, 刘淑明, 等. 持续干早及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J] . 西北林学院学报, 2007, 22(3):55-59.
[54] Liu N, Shen Y, Huang B. Osmoregulants involved in osmotic adjustment for differential drought tolerance in different bentgrass genotypes[J] . Journal of the American Society for Horticultural Science, 2015, 140(6):605-613.
[55] Hayat S, Hayat Q, Alyemeni MN, et al. Role of proline under changing environments:a review[J] . Plant signaling & behavior, 2012, 7(11):1456-1466.
[56] 杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应[J] . 作物学报, 2013, 39(3):530-536.
[57] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J] . Plant Physiology & Biochemistry Ppb, 48(12):909-930.
[58] Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J] . Cellular & Molecular Life Sciences Cmls, 2014, 72(4):673-89.
[59] Apel K, Hirt H. Reactive Oxygen Species:Metabolism, Oxidative Stress, and Signal Transduction[J] . Annual Review of Plant Biology, 2004, 55:373-399.
[60] 薛设, 王进鑫, 吉增宝, 等. 旱后复水对刺槐苗木叶片保护酶活性和膜质过氧化的影响[J] . 西北农林科技大学学报, 2009, 39(7):81-85.
[61] Huang Y, Yuan W, Mo L, et al. Physiological effect on hylocereus undulatus and hylocereus undatus hnder simulated karst soil water deficiency[J] . Journal of Resources & Ecology, 2015, 6(4):269-275.
[62] Wright STC, Hiron RWP. (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting[J] . Nature, 1969, 224(5220):719-720.
[63] Sharp RE. Interaction with ethylene:Changing views on the role of abscisic acid in root and shoot growth responses to water stress[J] . Plant Cell & Environment, 2002, 25(2):211-222.
[64] YU L, Ma HL. Dynamic changes of endogenous hormones in Gansu indigenous bluegrass under drought stress[J] . Grassland & Turf, 2014(2):22-26.
[65] 张炜, 高巍, 曹振, 等. 干旱胁迫下小麦(Triticumaestivum L.)幼苗中ABA和IAA的免疫定位及定量分析[J] . 中国农业科学, 2014, 47(15):2940-2948.
[66] 邵宏波, 梁宗锁, 邵明安. 小麦抗旱生理生化和分子生物学研究进展与趋势[J] . 草业学报, 2006, 15(3):5-17.
[67] Lopes MS, Araus JL, Heerden PD, et al. Enhancing drought tolerance in C(4)crops[J] . Journal of Experimental Botany, 2011, 62(9), 3135-3153.
[68] Golldack D, Luking L, Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J] . Plant Cell Reports, 2011, 30(8), 1383-1391.
[69] 李晓慧, 董明伟, 刘康. 植物抗旱基因及其功能研究进展[J] . 江苏农业科学, 2009(5):73-77.
[70] 李军, 龚喜明, 林惠琼. DGP1, 一个受干旱诱导的保卫细胞特异性启动子的构建与功能分析[J] . 中国科学:生命科学, 2004, 34(4):299-303.
[71] Shi WM. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana[J] . Gene, 2001, 273:23-27.
[72] 袁进成, 宋晋辉, 马海莲. 转玉米ZmABI3 -L基因增加拟南芥的抗旱和耐盐性[J] . 草业学报, 2016(2):124-131.
[73] Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice:simple or complex?[J] . Current Opinion in Plant Biology, 2013, 16(2):196-204.
[74] Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development[J] . Developmental Biology, 2013, 380(2):133-144.
[75] Budak H, Kantar M, Bulut R, et al. Stress responsive miRNAs and isomiRs in cereals[J] . Plant Science, 2015, 235:1-13.
[76] Sunkar R. MicroRNAs with macro-effects on plant stress responses[J] . Seminars in Cell & Developmental Biology, 2010, 21:805-811.
[77] Yin F, Qin C, Gao J, et al. Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco[J] . International Journal of Molecular Sciences, 2015, 16(3):5714-5740.
[78] Xie F, Wang Q, Sun R, et al. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J] . Journal of Experimental Botany, 2015, 66(3):789-804.
[79] Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response[J] . Plant Signaling & Behavior, 2014, 9(4):e28700.
[80] Tripathi P, Rabara RC, Reese RN, et al. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes[J] . Bmc Genomics, 2016, 17(1):1-22.
[81] Gong X, Zhang J, Hu J, et al. FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene[J] . Plant Cell & Environment, 2015, 38(11):2248-2262.
[82] Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon & times;Cynodon transvaalensis and Cynodon dactylon[J] . Physiologia Plantarum, 2011, 141(1):40-55.
[83] 张红亮, 王道文, 张正斌. 利用转录组学和蛋白质组学技术揭示小麦抗旱分子机制的研究进展[J] . 麦类作物学报, 2016, 36(7):878-887.
[84] 于秀敏, 张燕娜, 岳文冉, 等. 转CkLEA4基因拟南芥种子萌发期的抗逆性分析[J] . 西北植物学报, 2016, 36(4):648-654.
[85] Wang C, Lu W, He X, et al. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth[J] . Plant & Cell Physiology, 2016, 57(8):90-102. |