[1] Arendrup MC, Fuursted K, Gahrnhansen B, et al. Seminational surveillance of fungemia in denmark:notably high rates of fungemia and numbers of isolates with reduced azole susceptibility[J] . Journal of Clinical Microbiology, 2005, 43(9):4434-4440. [2] Nolte FS, Parkinson T, Falconer DJ, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia[J] . Antimicrobial Agents & Chemotherapy, 1997, 41(1):196-199. [3] Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus[J] . Antimicrobial Agents & Chemotherapy, 1997, 41(6):1364-1368. [4] Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients[J] . Lancet, 1996, 348(9040):1523. [5] Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole[J] . Antimicrobial Agents & Chemotherapy, 1995, 39(1):1. [6] 买佳. 白色念珠菌ERG11基因突变与其耐三唑类抗真菌药物的关系[D] . 郑州:郑州大学, 2015. [7] Lotfali E, Ghajari A, Kordbacheh P, et al. Regulation of ERG3, ERG6, and ERG11 genes in antifungal-resistant isolates of Candida parapsilosis[J] . Iranian Biomedical Journal, 2017, 21(4):275-281. [8] Silva DBDS, Rodrigues LMC, Almeida AAD, et al. Novel point mutations in the ERG11 gene in clinicalisolates of azole resistant Candida species[J] . Memórias Do Instituto Oswaldo Cruz, 2016, 111(3):192-199. [9] Feng W, Yang J, Wang Y, et al. ERG11 mutations and upregulation in clinical itraconazole-resistant isolates of Candida krusei[J] . Canadian Journal of Microbiology, 2016, 62(11):938. [10] Xu Y, Fang S, Zhao J, et al. ERG11, mutations and expression of resistance genes in fluconazole-resistant Candida albicans, isolates[J] . Archives of Microbiology, 2015, 197(9):1087-1093. [11] 王亚军, 何群. 表观遗传学研究的模式生物——粗糙脉孢菌[J] . 生物化学与生物物理进展, 2015(11):1026-1032. [12] Galagan JE, Calvo SE, Borkovich KA, et al. The genome sequence of the filamentous fungus Neurospora crassa[J] . 2003, 422(6934):859-868. [13] Gu X, Wei X, Yin Y, et al. The Hsp90 Co-chaperones Sti1, Aha1, and P23 regulate adaptive responses to antifungal azoles[J] . Frontiers in Microbiology, 2016, 7:1571. [14] Chen X, Wei X, Zhou J, et al. De-repression of CSP-1 activates adaptive responses to antifungal azoles[J] . Scientific Reports, 2016, 6:19447. [15] Liu J, Yuan Y, Wu Z, et al. A novel sterol regulatory element-binding protein gene(sreA)identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11(cyp51)regulation[J] . PLoS One, 2014, 10(2):e0117115. [16] 任海月, 董彬, 樊振川, 等. 莱茵衣藻纤毛内运输蛋白IFT46的原核表达纯化及其多克隆抗体的制备[J] . 生物工程学报, 2016, 32(8):1124-1132. [17] 董彬, 吴松, 王晶, 等. 莱茵衣藻纤毛内运送蛋白IFT27的原核表达、纯化及多克隆抗体制备[J] . 生物技术, 2016(6):532-538. [18] 田伟, 董彬, 李镇芳, 等. 莱茵衣藻IFT139蛋白抗原的原核表达、纯化及多克隆抗体的制备[J] . 天津科技大学学报, 2016, 31(6):27-33. [19] Rex JH. Reference method for broth dilution antifungal susceptibility testing of yeasts:Approved standard[M] . Clinical and Laboratory Standards Institute, 2008. [20] Wu SX, Guo NR, Li XF, et al. Human pathogenic fungi in China--emerging trends from ongoing national survey for 1986, 1996, and 2006[J] . Mycopathologia, 2011, 171(6):387-393. [21] 詹燏, 汤贝贝, 刘水逸, 等. 临床标本中假丝酵母菌属的检出率及耐药性分析[J] . 中华医院感染学杂志, 2012, 22(3):645-646. [22] 宏贤, 刘罡, 张晨, 等. 家蚕丝氨酸蛋白酶抑制剂4(serpin-4)的基因克隆、原核表达和多克隆抗体制备[J] . 昆虫学报, 2011, 54(6):642-647. [23] 孙金娥, 肖长义, 付冰冰, 等. 抗HPV L1小鼠单克隆抗体及兔多克隆抗体的制备[J] . 免疫学杂志, 2013(12):1079-1083. [24] 徐秋芳, 陈晴晴, 倪海平, 等. 灰飞虱原肌球蛋白的基因克隆、原核表达及多克隆抗体制备[J] . 中国农业科学, 2014, 47(19):3791-3798. |