[1] Guazzaroni ME, Silva-Rocha R, Ward RJ.Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening[J]. Microbial Biotechnology, 2015, 8(1):52-64. [2] d’Errico C, Borjesson J, Ding H.et al. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate[J]. Journal of Biotechnology, 2016, 219:117-123. [3] Zhang JW, Zeng RY.Purification and characterization of a cold-adapted alpha-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic[J]. Marine Biotechnology, 2008, 10(1):75-82. [4] 李正阳, 戎振, 王昭, 等. 来源于海洋细菌Altererythrobacterl-uteolus SW109T的新型酯酶E29的克隆表达及其酶学性质[J]. 微生物学通报, 2016(5):1051-1059. [5] Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, et al.Metagenomic era for biocatalyst identification[J]. Current Opinion in Biotechnology, 2010, 21(6):725-733. [6] Turnbaugh PJ, Gordon JI.An invitation to the marriage of metagenomics and metabolomics[J]. Cell, 2008, 134(5):708-713. [7] Tedesco P, Pascale DD.Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery[J]. Frontiers in Marine Science, 2014, 1(1):38. [8] 贺纪正, 张丽梅, 沈菊培, 等. 宏基因组学(Metagenomics)的研究现状和发展趋势[J]. 环境科学学报, 2008, 28(2):209-218. [9] 王魁, 汪思迪, 黄睿, 等. 宏基因组学挖掘新型生物催化剂的研究进展[J]. 生物工程学报, 2012, 28(4):420-431. [10] 张光亚, 方柏山. 宏基因组——生物催化剂的新来源[J]. 生命的化学, 2005, 25(4):278-281. [11] Lorenz P, Eck J.Metagenomics and industrial applications[J]. Nature Reviews Microbiology, 2005, 3(6):510-516. [12] Kennedy J, O’Leary ND, Kiran GS, et al. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems[J]. Journal of Applied Microbiology, 2011, 111(4):787-799. [13] Mohamed YM, Ghazy MA, Sayed A, et al.Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool[J]. Scientific Reports, 2013, 3(7477):3358. [14] Fu J, Leiros HK, De PD, et al.Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library[J]. Applied Microbiology and Biotechnology, 2013, 97(9):3965-3978. [15] Fang Z, Li J, Wang Q, et al.A novel esterase from a marine metagenomic library exhibiting salt tolerance ability[J]. Journal of Microbiology and Biotechnology, 2014, 24(6):771-780. [16] Chu X, He H, Guo C, et al.Identification of two novel esterases from a marine metagenomic library derived from South China Sea[J]. Applied Microbiology and Biotechnology, 2008, 80(4):615-625. [17] 李云娣, 曹明明, 顾昕琪, 等. 土壤宏基因组文库来源酯酶的鉴定与表征[J]. 微生物学通报, 2017, 44(6):1255-1262. [18] Wierzbicka-Wos A, Bartasun P, Cieslinski H, et al.Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with beta-glucosidase, beta-fucosidase and beta-galactosidase activities[J]. BMC Biotechnology, 2013, 13(1):1-12. [19] 王海东, 胡忠. 利用宏基因组法筛选新几丁质酶基因[J]. 生物技术进展, 2016, 6(2):119-124. [20] Piel J.Approaches to capturing and designing biologically active small molecules produced by uncultured microbes[J]. Annual Review of Microbiology, 2011, 65(1):431-453. [21] 梁跃斌, 李彬春, 李艳琴. 基于宏基因组学方法挖掘新型α-L-鼠李糖苷酶资源[J], 中国生物化学与分子生物学报, 2017(1):66-72. [22] McCall C, Xagoraraki I. Comparative study of sequence aligners for detecting antibiotic resistance in bacterial metagenomes[J]. Letters in Applied Microbiology, 2018, 66(3):162-168. [23] 骞宇, 赵欣. 大鼠粪便中细菌基因组DNA提取方法的比较[J]. 食品工业科技, 2014(4):166-169. [24] Jiang C, Wu LL, Zhao GC, et al.Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms[J]. Microbial Cell Factories, 2010, 9:91. [25] Wang H, Gong Y, Xie W, et al.Identification and characterization of a novel thermostable gh-57 gene from metagenomic fosmid library of the Juan de Fuca Ridge hydrothemal vent[J]. Applied Biochemistry and Biotechnology, 2011, 164(8):1323-1338. [26] Fang Z, Li T, Wang Q, et al.A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decol-orization ability[J]. Applied Microbiology and Biotechnology, 2011, 89(4):1103-1110. [27] Cheng J, Romantsov T, Engel K, et al.Functional metagenomics reveals novel beta-galactosidases not predictable from gene sequences[J]. PLoS One, 2017, 12(3):e0172545. [28] Bell PJ, Sunna A, Gibbs MD, et al.Prospecting for novel lipase genes using PCR[J]. Microbiology, 2002, 148(8):2283-2291. [29] Handelsman J, Rondon MR, Brady SF, et al.Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10):R245-R249. [30] 吕永坤, 堵国成, 陈坚, 等. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4):134-148. [31] 武临专, 洪斌. 微生物药物合成生物学研究进展[J]. 药学学报, 2013, 48(2):155-160. [32] Handelsman J.Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4):669-685. [33] Gabor EM, Alkema WB, Janssen DB.Quantifying the accessibility of the metagenome by random expression cloning techniques[J]. Environmental Microbiology, 2004, 6(9):879-886. [34] Osterberg S, del Peso-Santos T, Shingler V. Regulation of alternative sigma factor use[J]. Annual Review of Microbiology, 2011, 65(1):37-55. [35] Rhodius VA, Segall-Shapiro TH, Sharon BD, et al.Design of orthogonal genetic switches based on a crosstalk map of sigmas, anti-sigmas, and promoters[J]. Molecular Systems Biology, 2013, 9(1):702. [36] Terron-Gonzalez L, Medina C, Limon-Mortes MC, et al.Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries[J]. Scientific Reports, 2013, 3(4):1107. [37] Zelcbuch L, Antonovsky N, Bareven A, et al.Spanning high-dimensional expression space using ribosome-binding site combinatorics[J]. Nucleic Acids Research, 2013, 41(9):e98. [38] Uchiyama T, Miyazaki K.Functional metagenomics for enzyme discovery:challenges to efficient screening[J]. Current Opinion in Biotechnology, 2009, 20(6):616-622. [39] Bhat MK.Cellulases and related enzymes in biotechnology[J]. Biotechnology Advances, 2000, 18(5):355-383. [40] Ferrer M, Chernikova TN, Timmis KN, et al.Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain[J]. Applied and Environmental Microbiology, 2004, 70(8):4499-4504. [41] Dobson CM.Protein folding and misfolding[J]. Nature, 2003, 426(6968):884-890. [42] Cambray G, Mutalik VK, Arkin AP.Toward rational design of bacterial genomes[J]. Current Opinion in Microbiology, 2011, 14(5):624-630. [43] Medini D, Donati C, Tettelin H, et al.The microbial pan-genome[J]. Current Opinion in Genetics & Development, 2005, 15(6):589-594. [44] Pòsfai G, Plunkett G, Fehér T, et al.Emergent properties of reduced-genome Escherichia coli[J]. Science, 2006, 312(5776):1044-1046. [45] Martinez-Martinez M, Lores I, Pena-Garcia C, et al.Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters[J]. Microbial Biotechnology, 2014, 7(2):184-191. [46] Craig JW, Chang FY, Kim JH, et al.Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria[J]. Applied and Environmental Microbiology, 2010, 76(5):1633-1641. [47] Guazzaroni ME, Morgante V, Mirete S, et al.Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment[J]. Environmental Microbiology, 2013, 15(4):1088-1102. [48] Arkin A.Setting the standard in synthetic biology[J]. Nat Biotechnol, 2008, 26(7):771-774. [49] Shetty RP, Endy D, Knight TFJR, et al.Engineering BioBrick vectors from BioBrick parts[J]. J Biol Eng, 2008, 2:5. [50] Silva-Rocha R, Martinez-Garcia E, Calles B, et al.The Standard European Vector Architecture(SEVA):a coherent platform for the analysis and deployment of complex prokaryotic phenotypes[J]. Nucleic Acids Research, 2013, 41(Database issue):666-675. [51] Hu XP, Heath C, Taylor MP, et al.A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil[J]. Extremophiles:Life under Extreme Conditions, 2012, 16(1):79-86. [52] Ko KC, Han Y, Cheong DE, et al.Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system[J]. Journal of Microbiological Methods, 2013, 94(3):311-316. [53] Wong DW, Chan VJ, McCormack AA. Functional cloning and expression of a novel Endo-alpha-1, 5-L-arabinanase from a metagenomic library[J]. Protein and Peptide Letters, 2009, 16(12):1435-1441. [54] Hrvatin S, Piel J.Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools[J]. Journal of Microbiological Methods, 2007, 68(2):434-436. [55] Voigt CA.Genetic parts to program bacteria[J]. Current Opinion in Biotechnology, 2006, 17(5):548-557. [56] Nasuno E, Kimura N, Fujita MJ, et al.Phylogenetically novel LuxI/LuxR-type quorum sensing systems isolated using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(22):8067-8074. [57] Uchiyama T, Miyazaki K.Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes[J]. Applied and Environmental Microbiology, 2010, 76(21):7029-7035. [58] Cowan DA, Arslanoglu A, Burton SG, et al.Metagenomics, gene discovery and the ideal biocatalyst[J]. Biochemical Society Transactions, 2004, 32(2):298-302. [59] Purnick PE, Weiss R.The second wave of synthetic biology:from modules to systems[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6):410-422. [60] Weber W, Fussenegger M.Synthetic gene networks in mammalian cells[J]. Current Opinion in Biotechnology, 2010, 21(5):690-696. [61] Canton B, Labno A, Endy D.Refinement and standardization of synthetic biological parts and devices[J]. Nat Biotechnol, 2008, 26(7):787-793. [62] Koide T, Pang WL, Baliga NS.The role of predictive modelling in rationally re-engineering biological systems[J]. Nature Reviews Microbiology, 2009, 7(4):297-305. [63] Gardner TS, Cantor CR, Collins JJ.Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767):339-342. [64] Moon TS, Clarke EJ, Groban ES, et al.Construction of a genetic multiplexer to toggle between chemosensory pathways in Escherichia coli[J]. Journal of Molecular Biology, 2011, 406(2):215-227. [65] Siuti P, Yazbek J, Lu TK.Synthetic circuits integrating logic and memory in living cells[J]. Nat Biotechnol, 2013, 31(5):448-452. [66] 3Rd CR, Dunlop MJ, Elowitz MB. A synthetic three-color scaffold for monitoring genetic regulation and noise[J]. J Biol Eng, 2010, 4(1):10. [67] Silva-Rocha R, de Lorenzo V. Implementing an OR-NOT(ORN)logic gate with components of the SOS regulatory network of Escherichia coli[J]. Molecular BioSystems, 2011, 7(8):2389-2396. [68] Regot S, Macia J, Conde N, et al.Distributed biological computation with multicellular engineered networks[J]. Nature, 2011, 469(7329):207-211. [69] Porter TM, Hajibabaei M.Scaling up:A guide to high throughput genomic approaches for biodiversity analysis[J]. Molecular Ecology, 2018, 27(2):313-338. [70] Jiang Y, Wang J, Xia D, et al.EnSVMB:Metagenomics fragments classification using ensemble SVM and BLAST[J]. Scientific Reports, 2017, 7(1):9440. [71] Siegwald L, Touzet H, Lemoine Y, et al.Assessment of common and emerging bioinformatics pipelines for targeted metagenomics[J]. PLoS One, 2017, 12(1):e0169563. [72] Zhai P, Yang L, Guo X, et al.MetaComp:comprehensive analysis software for comparative meta-omics including comparative metagenomics[J]. BMC Bioinformatics, 2017, 18(1):434. [73] Ofaim S, Ofek-Lalzar M, Sela N, et al.Analysis of microbial functions in the rhizosphere using a metabolic-network based framework for metagenomics interpretation[J]. Front Microbiol, 2017, 8:1606. |