生物技术通报 ›› 2018, Vol. 34 ›› Issue (9): 15-28.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0381
田晶晶, 罗云波, 许文涛
收稿日期:
2018-04-23
出版日期:
2018-09-26
发布日期:
2018-10-10
作者简介:
田晶晶,女,博士研究生,研究方向:生物化学分析与生物传感;E-mail:TianJJ.cn@gmail.com
基金资助:
TIAN Jing-jing, LUO Yun-bo, XU Wen-tao
Received:
2018-04-23
Published:
2018-09-26
Online:
2018-10-10
摘要: 三螺旋核酸是在经典的沃森-克里克(Waston-Crick)氢键形成的双链核酸基础上,第三条寡核苷酸链以非经典的胡斯特(Hoogsteen)氢键嵌入到双链大沟(Major groove)中形成的超分子核酸组装体。在近年来发展的众多生物传感方法中,基于三螺旋核酸的生物传感平台凭借其快速、灵敏、简单、可逆等特点而备受瞩目。从生物传感器的角度,综述了三螺旋核酸生物传感器的类别与性质,分类评述了常见的三螺旋核酸生物传感器与三螺旋核酸传感元件的应用,并对三螺旋核酸生物传感器的发展前景进行了展望。
田晶晶, 罗云波, 许文涛. 基于三螺旋核酸的生物传感器的研究进展[J]. 生物技术通报, 2018, 34(9): 15-28.
TIAN Jing-jing, LUO Yun-bo, XU Wen-tao. Advances in Biosensors Based on Triplex Nucleic Acids[J]. Biotechnology Bulletin, 2018, 34(9): 15-28.
[1] Wang F, Liu X, Willner I.DNA switches:from principles to applications[J]. Angew Chem, 2015, 54(4):1098-1129. [2] Seelig G, Soloveichik D, Zhang DY, et al.Enzyme-free nucleic acid logic circuits[J]. Science, 2006, 314(5805):1585-1588. [3] Qian L, Winfree E, Bruck J.Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 7356:368-372. [4] Liu X, Lu CH, WIllner I.Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines[J]. Accounts of Chemical Research, 2014, 47(6):1673-1680. [5] Felsenfeld G, Davies DR, Rich A.Formation of a 3-stranded polynucleotide molecule[J]. J Am Chem Soc, 1957, 79(8):2023-2040. [6] Yamagata Y, Emura T, Hidaka K, et al.Triple helix formation in a topologically controlled DNA nanosystem[J]. Chemistry, 2016, 22(16):5494-5498. [7] Porchetta A, Idili A, Vall Eb Lisle A, et al. General strategy to introduce pH-Induced allostery in DNA-based receptors to achieve controlled release of ligands[J]. Nano Lett, 2015, 7:4467-4471. [8] Liao WC, Riutin M, Parak WJ, et al.Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots[J]. ACS Nano, 2016, 10(9):8683-8689. [9] Kahn JS, Freage L, Enkin N, et al.Stimuli-responsive DNA-functionalized metal-organic frameworks(MOFs)[J]. Adv Mater, 2017, 29(6). doi:org/10.1002/adma.201602782. [10] Conde J, Oliva N, Atilano M, et al.Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment[J]. Nat Mater, 2016, 3:353-363. [11] Idili A, Plaxco KW, Vallée-Bélisle A, et al.Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches[J]. ACS Nano, 2013, 12:10863-10869. [12] Li Z, Miao X, Xing K, et al.Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles[J]. Biosensors & Bioelectronics, 2015, 74:687-690. [13] Xi D, Wang X, Ai S, et al.Detection of cancer cells using triplex DNA molecular beacons based on expression of enhanced green fluorescent protein(eGFP)[J]. Chem Commun, 2014, 50(67):9547-9549. [14] Zhu D, Zhu J, Zhu Y, et al.Sensitive detection of transcription factors using an Ag+-stabilized self-assembly triplex DNA molecular switch[J]. Chem Commun, 2014, 50(95):14987-14990. [15] Liu JW, Lu Y.A DNAzyme Catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc, 2007, 32:9838-9839. [16] Xu W, Tian J, Shao X, et al.A rapid and visual aptasensor for Lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures[J]. Biosensors & Bioelectronics, 2016, 89(2):795-801. [17] Maher LJ, Dervan PB, Wold BJ.Kinetic analysis of oligodeoxyribo-nucleotide-directed triple-helix formation on DNA[J]. Biochemistry, 1990, 29(37):8820-8826. [18] Idili A, Vall Eb Lisle A, Ricci F. Programmable pH-triggered DNA nanoswitches[J]. J Am Chem Soc, 2014, 16:5836-5839. [19] Trkulja I, H Ner R. Monomeric and heterodimeric triple helical DNA mimics[J]. J Am Chem Soc, 2007, 129(25):7982-7989. [20] Antony T, Thomas T, Sigal LH, et al.A molecular beacon strategy for the thermodynamic characterization of triplex DNA: Triplex Formation at the Promoter Region of Cyclin D1[J]. Development Genes & Evolution, 2001, 212(8):365-373. [21] Antony T, Subramaniam V.A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics[J]. Antisense & Nucleic Acid Drug Development, 2002, 12(3):145-147. [22] Ihara T, Ishii T, Araki N, et al.Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex[J]. J Am Chem Soc, 2009, 131(11):3826-3827. [23] Han MS, Lyttonjean AK, Mirkin CA.A gold nanoparticle based approach for screening triplex DNA binders[J]. J Am Chem Soc, 2006, 128(15):4954-4955. [24] Patterson A, Caprio F, Vall Eb Lisle A, et al. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA[J]. Anal Chem, 2010, 82(21):9109-9115. [25] Zheng J, Li J, Jiang Y, et al.Design of aptamer-based sensing platform using triple-helix molecular switch[J]. Anal Chem, 2011, 83(17):6586-6592. [26] Du Y, Mao Y, He X, et al.A signal on aptamer-based electrochemical sensing platform using a triple-helix molecular switch[J]. Analytical Methods, 2014, 6(16):6294-6300. [27] Ramezani M, Danesh NM, Lavaee P, et al.A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline[J]. Biosens Bioelectron, 2015, 70:181-187. [28] Idili A, Amodio A, Vidonis M, et al.Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity[J]. Anal Chem, 2014, 86(18):9013-9019. [29] Kandimalla ER, Agrawal S.Hoogsteen DNA duplexes of 3’-3’- and 5’-5’-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands:experimental and molecular modeling studies[J]. Biochem, 1996, 48:15332-15339. [30] Betts L, Josey JA, Veal JM, et al.A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex[J]. Science, 1995, 270(5243):1838-1841. [31] Baker ES, Hong JW, Gaylord BS, et al.PNA/dsDNA complexes:site specific binding and dsDNA biosensor applications[J]. J Am Chem Soc, 2006, 128(26):8484-8492. [32] Li K, Liu B.Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity[J]. Anal Chem, 2009, 81(10):4099-4105. [33] Tom G, Lars R, Oliver S.Triplex molecular beacons as modular probes for DNA detection[J]. Angew Chem Int Ed Engl, 2007, 46(27):5223-5225. [34] Hamidi-Asl E, Raoof JB, Ojani R, et al.A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation[J]. J Iran Chem Soc, 2013, 10(6):1075-1083. [35] 马小明, 孙密, 林悦, 等. 基于金纳米材料的可视化生物传感器的研究进展[J]. 分析化学, 2018, 1(46):1-10. [36] Jung YH, Lee KB, Kim YG, et al.Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation[J]. Angew Chem, 2006, 45(36):5960-5963. [37] Xiong C, Wu C, Zhang H, et al.Gold nanoparticles-based colorimetric investigation of triplex formation under weak alkalic pH environment with the aid of Ag+[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 79(5):956-961. [38] Zheng J, Jiao A, Yang R, et al.Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine[J]. J Am Chem Soc, 2012, 134(49):19957-19960. [39] Guerrini L, Mckenzie F, Wark AW, et al.Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation:correlation between plasmonic and surface-enhanced Raman scattering responses[J]. Chem Sci, 2012, 7:2262-2269. [40] Zheng J, Hu Y, Bai J, et al.Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes[J]. Anal Chem, 2014, 4:2205-2212. [41] Cai X, Rivas G, Shirashi H, et al.Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces[J]. Anal Chim Acta, 1997, 344(1):65-76. [42] Wang X, Jiang A, Hou T, et al.A versatile label-free and signal-on electrochemical biosensing platform based on triplex-forming oligonucleotide probe[J]. Anal Chim Acta, 2015, 890:91-97. [43] Amodio A, Zhao B, Porchetta A, et al.Rational design of pH-controlled DNA strand displacement[J]. J Am Chem Soc, 2014, 136(47):16469-16472. [44] Idili A, Porchetta A, Amodio A, et al.Controlling hybridization chain reactions with pH[J]. Nano Lett, 2015, 8:5539-5544. [45] Chen Y, Lee SH, Mao C.A DNA nanomachine based on a duplex-triplex transition[J]. Angew Chem, 2010, 43(40):5335-5338. [46] Yang M, Zhang X, Liu H, et al.Stable DNA nanomachine based on duplex-triplex transition for ratiometric imaging instantaneous pH changes in living cells[J]. Anal Chem, 2015, 12:5854-5859. [47] Erica DG, Anne-Marie D, Alexis VB, et al.Enzyme-operated DNA-based nanodevices[J]. Nano Lett, 2015, 15(12):8407-8411. [48] Chen Y, Mao C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates[J]. Small, 2010, 12:2191-2194. [49] Wu N, Willner I. pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems[J]. Nano Lett, 2016, 16(10):6650-6655. [50] Hu Y, Ren J, Lu CH, et al.Programmed pH-driven reversible association and dissociation of interconnected circular DNA dimer nanostructures[J]. Nano Lett, 2016, 16(7):4590-4594. [51] Fu TJ, Seeman NC.DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13):3211-3220. [52] Rothemund PW, Ekani-Nkodo A, Papadakis N, et al.Design and characterization of programmable DNA nanotubes[J]. J Am Chem Soc, 2004, 126(50):16344-16352. [53] Amodio A, Adedeji AF, Castronovo M, et al.pH-controlled assembly of DNA tiles[J]. J Am Chem Soc, 2016, 138(39):12735-12738. [54] Green LN, Amodio A, Hkk S, et al.pH-driven reversible self-assembly of micron-scale DNA scaffolds[J]. Nano Lett, 2017, 17(12):7283-7288. [55] Ye S, Wu Y, Zhang W, et al.A sensitive SERS assay for detecting proteins and nucleic acids using a triple-helix molecular switch for cascade signal amplification[J]. Chem Commun, 2014, 50(66):9409-9412. [56] Li Y, Miao X, Ling L.Triplex DNA:A new platform for polymerase chain reaction-based biosensor[J]. Sci Rep, 2015, 5:13010-13013. [57] Ren J, Hu Y, Lu C H, et al.pH-responsive and switchable triplex-based DNA hydrogels[J]. Chem Sci, 2015, 6(7):4190-4195. [58] Hu Y, Lu CH, Guo W, et al.A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness[J]. Adv Funct Mater, 2016, 25(44):6867-6874. [59] Hu Y, Guo W, Kahn JS, et al.A Shape-memory DNA-based hydrogel exhibiting two internal memories[J]. Angew Chem Int Ed Engl, 2016, 55(13):4210-4214. [60] Yamagata Y, Emura T, Hidaka K, et al.Triple helix formation in a topologically controlled DNA nanosystem[J]. Chemistry, 2016, 22(16):5494-5498. [61] Del GE, Idili A, Porchetta A, et al.A modular clamp-like mechan-ism to regulate the activity of nucleic-acid target-responsive nanos-witches with external activators[J]. Nanoscale, 2016, 8(42):18057-18061. [62] Zheng H, Ma X, CHen L, et al.Label-free electrochemical impedance biosensor for sequence-specific recognition of double-stranded DNA[J]. Analytical Methods, 2013, 19:5005-5009. [63] Xiong E, Li Z, Zhang X, et al.A triple-helix molecular switch electrochemical ratiometric biosensor for ultrasensitive detection of nucleic acids[J]. Anal Chem, 2017, 89(17):8830-8835. [64] Tang P, Zheng J, Tang J, et al.Programmable DNA triple-helix molecular switch in biosensing applications:from in homogenous solutions to in living cells[J]. Chem Commun, 2017, 53(16):2507-2510. [65] Xiong Y, Lin L, Zhang X, et al.Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification[J]. RSC Advances, 2016, 6(44):37681-37688. [66] Liu J, Lu Y.A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc, 2007, 129(32):9838-9939. [67] Wang H, Zhang Y, Ma H, et al.Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and Multistage Signal Amplification Strategy[J]. Biosensors & Bioelectronics, 2016, 86:907-912. |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[3] | 王鹏飞, 杨敏, 朱龙佼, 许文涛. 基于铂纳米团簇的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 235-242. |
[4] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[5] | 方顺燕, 宋丹, 刘艳萍, 徐文娟, 刘佳瑶, 韩向峙, 龙峰. 用于Escherichia coli O157∶H7直接快速检测的倏逝波荧光核酸适配体传感器研究[J]. 生物技术通报, 2020, 36(7): 228-234. |
[6] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[7] | 杨敏, 李舒婷, 杨文平, 李相阳, 许文涛. DNA/银纳米簇介导的功能核酸生物传感器研究进展[J]. 生物技术通报, 2020, 36(6): 245-254. |
[8] | 柳苏月, 田晶晶, 田洪涛, 许文涛. 铽(III)离子及其复合物:从发光特性到传感应用[J]. 生物技术通报, 2020, 36(4): 192-207. |
[9] | 孙雨阁, 李宸葳, 杜再慧, 许文涛. FEN1酶介导的功能核酸生物传感器的研究进展[J]. 生物技术通报, 2020, 36(4): 208-224. |
[10] | 吴亚, 徐智辉, 张彪, 赵冬芳, 曹文欣, 张兴平. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 193-201. |
[11] | 肖冰, 罗云波, 黄昆仑, 张园, 许文涛. 功能核酸荧光标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(7): 213-221. |
[12] | 谢银侠, 王蔚然, 程楠, 许文涛. 电信号分子在电化学功能核酸生物传感器中的研究进展[J]. 生物技术通报, 2019, 35(5): 157-169. |
[13] | 肖冰, 刘榜, 罗云波, 黄昆仑, 张园, 李夏莹, 张秀杰, 许文涛, 周翔. 功能核酸荧光免标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(3): 194-202. |
[14] | 李宸葳, 杜再慧, 林少华, 罗云波, 许文涛. Pb2+功能核酸生物传感器的研究进展[J]. 生物技术通报, 2019, 35(1): 131-139. |
[15] | 李凯, 罗云波, 许文涛. 10-23脱氧核酶介导的生物传感器研究进展[J]. 生物技术通报, 2019, 35(1): 140-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||