生物技术通报 ›› 2019, Vol. 35 ›› Issue (10): 46-56.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0901
林丽1, 李杨瑞1, 安千里2
收稿日期:
2019-09-25
出版日期:
2019-10-26
发布日期:
2019-09-30
作者简介:
林丽,女,博士,副研究员,研究方向:甘蔗生物学;E-mail:linligx@163.com
基金资助:
LIN Li1, LI Yang-rui1, AN Qian-li2
Received:
2019-09-25
Published:
2019-10-26
Online:
2019-09-30
摘要: 在巴西,某些甘蔗品种能通过生物固氮获得生长所需氮素。对甘蔗根际固氮菌和内生固氮菌的研究曾引领了非豆科植物联合固氮的研究。内生固氮菌Gluconacetobacter diazotrophicus表现出很多特性,与Herbaspirillum seropedicae、H. rubrisubalbicans、Nitrospirillum amazonense和Paraburkholderia tropica组成的固氮菌剂能联合甘蔗固氮并促进甘蔗生长。近年来的研究发现分类上属于Bradyrhizobium和Rhizobium等属的根瘤菌在与甘蔗联合的核心固氮菌群之中,以不结瘤的方式在甘蔗体内活跃地表达固氮酶基因。综述了这些甘蔗联合固氮菌的特色研究并探讨优化甘蔗联合固氮的策略。
林丽, 李杨瑞, 安千里. 甘蔗联合固氮的回顾与展望[J]. 生物技术通报, 2019, 35(10): 46-56.
LIN Li, LI Yang-rui, AN Qian-li. Biological Nitrogen Fixation in Association with Sugarcane:Retrospect and Prospect[J]. Biotechnology Bulletin, 2019, 35(10): 46-56.
[1] Beatty PH, Good AG.Future prospects for cereals that fix nitrogen[J]. Science, 2011, 333:416-417. [2] Döbereiner J.History and new perspectives of diazotrophs in association with non-leguminous plants[J]. Symbiosis, 1992, 13:1-13. [3] Tjepkema J.Nitrogenase activity in the rhizosphere of Panicum virgatum[J]. Soil Biology & Biochemistry, 1975, 7:179-180. [4] Zafar Y, Ashraf M, Malik KA.Nitrogen fixation associated with roots of Kallar grass(Leptochloa fusca L. Kunth)[J]. Plant and Soil, 1986, 90:93-105. [5] Boddey RM, Urquiaga S, Reis V, et al.Biological nitrogen fixation associated with sugar cane[J]. Plant and Soil, 1991, 137:111-117. [6] Urquiaga S, Xavier RP, de Morais RF, et al. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties[J]. Plant and Soil, 2012, 356:5-21. [7] Döbereiner J, Day JM, Dart PJ.Nitrogenase activity in the rhizosphere of sugar cane and some other tropical grasses[J]. Plant and Soil, 1972, 37:191-196. [8] Ruschel AP, Henis Y, Salati E.Nirogen-15 tracing of N-fixation with soil-grown sugarcane seedlings[J]. Soil Biology & Biochemistry, 1975, 7:181-182. [9] Ruschel AP, Victoria RL, Salati E, et al.Nitrogen fixation in sugarcane(Saccharum officinarum L.)[J]. Ecological Bulletins(Stockholm), 1978, 26:297-303. [10] Lima E, Boddey RM, Döbereiner J.Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance[J]. Soil Biology & Biochemistry, 1987, 19:165-170. [11] Urquiaga S, Cruz KHS, Boddey RM.Contribution of nitrogen fixation to sugar cane:nitrogen-15 and nitrogen-balance estimates[J]. Soil Science Society of America Journal, 1992, 56:105-114. [12] Yoneyama T, Muraoka T, Kim TH, et al.The natural 15N abundance of sugarcane and neighboring plants in Brazil, the Philippines and Miyako(Japan)[J]. Plant and Soil, 1997, 189:239-244. [13] Boddey RM, Polidoro JC, Resende AS, et al.Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses[J]. Australian Journal of Plant Physiology, 2001, 28:889-895. [14] Li YR, Yang LT.Sugarcane agriculture and sugar industry in China[J]. Sugar Tech, 2015, 17:1-8. [15] Baldani JI, Reis VM, Baldani VL, et al.A brief story of nitrogen fixation in sugarcane-reasons for success in Brazil[J]. Functional Plant Biology, 2002, 29:417-423. [16] Baldani JI, Baldani VL.History on the biological nitrogen fixation research in graminaceous plants:special emphasis on the Brazilian experience[J]. Anais da Academia Brasileira de Ciências, 2005, 77:549-579. [17] Cavalcante VA, Dobereiner J.A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane[J]. Plant and Soil, 1988, 108:23-31. [18] Reis VM, Olivares FL, Döbereiner J.Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat[J]. World Journal of Microbiology and Biotechnology, 1994, 10:401-405. [19] Reis VM, Döbereiner J.Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus[J]. Archives of Microbiology, 1998, 171:13-18. [20] Dong Z, Zelmer CD, Canny MJ, et al.Evidence for protection of nitrogenase from O2 by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus[J]. Microbiology, 2002, 148:2293-2298. [21] Velázquez-Hernández ML, Baizabal-Aguirre VM, Cruz-Vázquez F, et al.Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation[J]. Archives of Microbiology, 2011, 193:137-149. [22] Flores-Encarnación M, Contreras-Zentella M, Soto-Urzua L, et al.The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5[J]. Applied and Environmental Microbiology, 1999, 181:6987-6995. [23] Ureta A, Nordlund S.Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein[J]. Journal of Bacteriology, 2002, 184:5805-5809. [24] Muthukumarasamy R, Revathi G, Seshadri S, et al.Gluconacetobacter diazotrophicus(syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics[J]. Current Science, 2002, 83:137-145. [25] Stephan MP, Oliveira M, Teixeira KRS, et al.Physiology and dinitrogen fixation of Acetobacter diazotrophicus[J]. FEMS Microbiology Letters, 1991, 77:67-72. [26] Cojho EH, Reis VM, Schenberg ACG, et al.Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture[J]. FEMS Microbiology Letters, 1993, 106:341-346. [27] Oliveira ALM, Urquiaga S, Döbereiner J, et al.The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants[J]. Plant and Soil, 2002, 242:205-215. [28] Oliveira ALM, Stoffels M, Schmid M, et al.Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria[J]. European Journal of Soil Biology, 2009, 45:106-113. [29] Muñoz-Rojas J, Caballero-Mellado J.Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth[J]. Microbial Ecology, 2003, 46:454-564. [30] Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J, et al.Colonisation of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilisation[J]. FEMS Microbiology Ecology, 1999, 29:117-128. [31] Muthukumarasamy R, Revathi G, Lakshminarasimhan C.Influence of N-fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties[J]. Biology and Fertility of Soils, 1999, 29:157-164. [32] Sevilla M, Burris RH, Guanapala N.et al.Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild type and nif-mutant strains[J]. Molecular Plant-Microbe Interactions, 2001, 14:358-366. [33] Fischer D, Pfitzner B, Schmid M, et al.Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane(Saccharum sp. )[J]. Plant and Soil, 2012, 356:83-99. [34] Lee S, Flores-Encarnación M, Contreras-Zentella M, et al.Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes[J]. Journal of Bacteriology, 2004, 186:5384-5391. [35] Bastian F, Cohen A, Piccoli P, et al.Production of indole-3-acetic acid and gibberellins A(1)and A(3)by Acetobacter diazotro-phicus and Herbaspirillum seropedicae in chemically-defined culture media[J]. Plant Growth Regulation, 1998, 24:7-11. [36] Paula MA, Reis VM, Döbereiner J.Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato(Ipomoea batatas), sugarcane(Saccharum spp. ), and sweet sorghum(Sorghum vulgare)[J]. Biology and Fertility of Soils, 1991, 11:111-115. [37] Ashbolt NJ, Inkerman PA.Acetic acid bacterial biota of the pink sugar cane mealybug Saccharococus sacchari and its environs[J]. Applied and Environmental Microbiology, 1990, 56:707-712. [38] Baldani J, Caruso L, Baldani VL, et al.Recent advances in BNF with non-legume plants[J]. Soil Biology & Biochemistry, 1997, 29:911-922. [39] Jimenez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernándes A, et al.Coffea arabica L. , a new host plant for Acetobacter diazotrophicus and isolation of other nitrogen-fixing acetobacteria[J]. Applied and Environmental Microbiology, 1998, 63:3676-3683. [40] Madhaiyan M, Saravanan VS, Bhakiya SSJD, et al.Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of western Ghats, India[J]. Microbiological Research, 2004, 159:233-243. [41] Loganathan P, Sunita R, Parida AK, et al.Isolation and characterization of two genetically distinct groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L[J]. Journal of Applied Microbiology, 1999, 87:167-172. [42] Tapia-Hernandez A, Bustillo-Cristales MR, Jimenez-Salgado T, et al.Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants[J]. Microbial Ecology, 2000, 39:49-55. [43] Muthukumarasamy R, Cleenwerck I, Revathi G, et al.Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice[J]. Systematic and Applied Microbiology, 2005, 28:277-286. [44] Oliveira ALM, Canuto EL, Silva EE, et al.Survival of endophytic diazotrophic bacteria in soil under different moisture levels[J]. Brazilian Journal of Microbiology, 2004, 35:295-299. [45] Bastian F, Rapparini F, Baraldi R, et al.Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor[J]. Symbiosis, 1999, 27:147-156. [46] Riggs PJ, Chelius MK, Iniguez AL, et al.Enhanced maize productivity by inoculation with diazotrophic bacteria[J]. Australian Journal of Plant Physiology, 2001, 28:829-836. [47] Trujillo-López A, Camargo-Zendejas O, Salgado-Garciglia R, et al.Association of Gluconacetobacter diazotrophicus with roots of common bean(Phaseolus vulgaris)seedlings is promoted in vitro by UV light[J]. Canadian Journal of Botany, 2006, 84:321-327. [48] de Souza AR, De Souza SA, De Oliveira MVV, et al. Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense[J]. Plant and Soil, 2016, 399:257-270. [49] Cocking EC, Stone PJ, Davey MR.Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus[J]. In Vitro Cellular & Developmental Biology-Plant, 2006, 42:74-82. [50] Etxeberria E, Baroja-Fernandez E, Muñoz F, et al.Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells[J]. Plant and Cell Physiology, 2005, 46:474-481. [51] Dent D, Cocking E.Establishing symbiotic nitrogen fixation in cereals and other non-legume crops:The Greener Nitrogen Revolution[J]. Agriculture & Food Security, 2017, 6:7. [52] Bergman B, Johansson C, Söderbäck E.The Nostoc-Gunnera symbiosis[J]. New Phytologist, 1992, 122:379-400. [53] Thomas P, Sekhar AC. Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria[J]. AoB Plants, 2014, 6:plu002. [54] Thomas P, Agrawal M, Bharathkumar CB.Diverse cellular colonizing endophytic bacteria in field shoots and in vitro cultured papaya with physiological and functional implications[J]. Physiologia Plantarum, 2019, 166:729-747. [55] Monteiro RA, Balsanelli E, Wassem R, et al.Herbaspirillum-plant interactions:microscopical, histological and molecular aspects[J]. Plant and Soil, 2012, 356:175-196. [56] Oliveira MM, Ramos ETA, Drechsel MM, et al.Gluconacin from Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria[J]. Journal of Applied Microbiology, 2018, 125:1812-1826. [57] Oliveira ALM, Canuto EL, Urquiaga S, et al.Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria[J]. Plant and Soil, 2006, 284:23-32. [58] Schultz N, Pereira W, de Albuquerque Silva P, et al. Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium[J]. Plant Production Science, 2017, 20:366-374. [59] dos Santos SG, Chaves VA, da Silva Ribeiro F, et al. Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria[J]. Applied Soil Ecology, 2019, 133:12-23. [60] You M, Nishiguchi T, Saito A, et al.Expression of the nifH gene of a Herbaspirillum endophyte in wild rice species:Daily rhythm during the light-dark cycle[J]. Applied and Environmental Microbiology, 2005, 71:8183-8190. [61] Zehr JP, Montoya JP, Jenkins BD, et al.Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre[J]. Limnology and Oceanography, 2007, 52:169-183. [62] Burbano CS, Liu Y, Roesner KL, et al.Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce[J]. Environmental Microbiology Report, 2011, 3:383-389. [63] Asis CA, Kubota M, Ohta H, et al.Estimation of the nitrogen fixation by sugarcane cultivar NiF-8 using 15N dilution and natural 15N abundance techniques[J]. Soil Science and Plant Nutrition, 2002, 48:283-285. [64] Thaweenut N, Hachisuka Y, Ando S, et al.Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane(Saccharum spp. hybrids):expression of nifH genes similar to those of rhizobia[J]. Plant and Soil, 2011, 338:435-449. [65] Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, et al.The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application[J]. Environmental Microbiology, 2016, 18:1338-1351. [66] Dong M, Yang Z, Cheng G, et al.Diversity of the bacterial microbiome in the roots of four Saccharum species:S. spontaneum, S. robustum, S. barberi, and S. officinarum[J]. Frontier in Microbiology, 2018, 9:267. [67] Rouws LFM, Leite J, de Matos GF, et al. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies[J]. Environmental Microbiology Reports, 2014, 6:354-363. [68] Chaintreuil C, Giraud E, Prin Y, et al.Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata[J]. Applied and Environmental Microbiology, 2000, 66:5437-5447. [69] Piromyou P, Greetatorn T, Teamtisong K, et al.Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution[J]. Applied and Environmental Microbiology, 2015, 81:3049-3061. [70] Piromyou P, Greetatorn T, Teamtisong K, et al.Potential of rice stubble as a reservoir of bradyrhizobial inoculum in rice-legume crop rotation[J]. Applied and Environmental Microbiology, 2017, 83:e01488-17. [71] Guha S, Sarkar M, Ganguly P, et al.Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India[J]. Environmental Microbiology, 2016, 18:2575-2590. [72] Yoneyama T, Terakado J, Masuda T.Natural abundance of 15N in sweet potato, pumpkin, sorghum and castor bean:possible input of N2-derived nitrogen in sweet potato[J]. Biology and Fertility of Soils, 1998, 26:152-154. [73] Terakado-Tonooka J, Ohwaki Y, Yamakawa H, et al.Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes(Ipomoea batatas L.)[J]. Microbes and Environments, 2008, 23:89-93. [74] Terakado-Tonooka J, Fujihara S, Ohwaki Y.Possible contribution of Bradyrhizobium on nitrogen fixation in sweet potatoes[J]. Plant and Soil, 2013, 367:639-650. [75] Okubo T, Piromyou P, Tittabutr P, et al.Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium[J]. Microbes and Environments, 2016, 31:260-267. [76] Hara S, Morikawa T, Wasai S, et al.Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses[J]. Frontiers in Microbiology, 2019, 10:407. [77] Delgado-Baquerizo M, Oliverio AM, Brewer TE, et al.A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359:320-325. [78] Shah V, Subramaniam S.Bradyrhizobium japonicum USDA110:a representative model organism for studying the impact of pollutants on soil microbiota[J]. Science of the Total Environment, 2018, 624:963-967. [79] Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, et al.Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence[J]. Nature Communication, 2017, 8:215. [80] Lemanceau P, Blouin M, Muller D, et al.Let the core microbiota be functional[J]. Trends in Plant Science, 2017, 22:583-595. [81] Louca S, Jacques SM, Pires AP, et al.High taxonomic variability despite stable functional structure across microbial communities[J]. Nature Ecology & Evolution, 2017, 1(1):15. [82] De Souza RSC, Okura VK, Armanhi JSL, et al.Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome[J]. Scientific Reports, 2016, 6:28774. [83] Hamonts K, Trivedi P, Garg A, et al.Field study reveals core plant microbiota and relative importance of their drivers[J]. Environmental Microbiology, 2018, 20:124-140. [84] Biggs IM, Stewart GR, Wilson JR, et al.15N natural abundance studies in Australian commercial sugarcane[J]. Plant and Soil, 2002, 238:21-30. [85] Paungfoo-Lonhienne C, Yeoh YK, Kasinadhuni NRP, et al.Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere[J]. Scientific Reports, 2015, 5:8678. [86] Lin L, Li Z, Hu C, et al.Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China[J]. Microbes and Environments, 2012, 27:391-398. [87] 彭东海, 杨建波, 李健, 等. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9):959-969. [88] Solanki MK, Li CN, Wang FY, et al.Linkages of soil nutrients and diazotrophic microbiome under sugarcane-legume intercropping[DB]. Preprints, 2018, doi:10. 20944/preprints201810. 0382. v1 [89] Yang L, Liao F, Muhammad A, et al.Screening of sugarcane for high nitrogen-use efficiency at the seedling stage[C]. Proceedings of the International Society of Sugar Cane Technologists, 2019, 30:1696-1702. [90] Boddey RM, Urquiaga S, Alves BJ, et al.Endophytic nitrogen fixation in sugarcane:present knowledge and future applications[J]. Plant and Soil, 2003, 252:139-149. [91] Reis VM, Olivares FL, de Oliveira ALM, et al. Technical approaches to inoculate micropropagated sugar cane plants were Acetobacter diazotrophicus[J]. Plant and Soil, 1999, 206:205-211. [92] 林丽. 广西ROC22甘蔗联合固氮菌的研究[D]. 南宁:广西大学, 2011. [93] Wei CY, Lin L, Luo LJ, et al.Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth[J]. Biology and Fertility of Soils, 2014, 50:657-666. [94] Dent D.Non-nodular endophytic bacterial symbiosis and the nitrogen fixation of Gluconacetobacter diazotrophicus[M]. //Rigobelo EC. Symbiosis. London:IntechOpen, 2018:53-82. [95] Dos-Santos CM, de Souza DG, Balsanelli E, et al. A culture-independent approach to enrich endophytic bacterial cells from sugarcane stems for community characterization[J]. Microbial Ecology, 2017, 74:453-465. [96] Armanhi JSL, de Souza RSC, de Araújo LM, et al. Multiplex amplicon sequencing for microbe identification in community-based culture collections[J]. Scientific Reports, 2016, 6:29543. [97] Armanhi JSL, de Souza RSC, Damasceno NDB, et al. A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome[J]. Frontiers in Plant Science, 2018, 8:2191. [98] Baldani JI, Reis VM, Videira SS, et al.The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media:a practical guide for microbiologists[J]. Plant and Soil, 2014, 384:413-431. |
[1] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[2] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[3] | 邹兰, 王茜, 李慕仪, 叶坤浩, 黄晶. 乌头内生细菌JY-3-1R的鉴定及其生防和促生能力研究[J]. 生物技术通报, 2023, 39(10): 246-255. |
[4] | 贺丽娜, 冯源, 石慧敏, 叶建仁. 具有杀线活性马尾松内生细菌的筛选与鉴定[J]. 生物技术通报, 2022, 38(8): 159-166. |
[5] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[6] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[7] | 王晓丽, 秦杰, 王敏, 王利祥, 杜维俊. 山西大豆根瘤菌的分离、鉴定及共生匹配性筛选[J]. 生物技术通报, 2022, 38(3): 59-68. |
[8] | 刘爽, 姚佳妮, 沈聪, 代金霞. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J]. 生物技术通报, 2022, 38(12): 252-262. |
[9] | 曹海鹏, 张书萌, 刁菁, 许拉, 盖春蕾. 一株增强中华绒螯蟹抗病力的固氮红细菌SY5的分离鉴定与表征[J]. 生物技术通报, 2022, 38(11): 277-285. |
[10] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[11] | 唐嘉城, 梁毅珉, 马葭思, 彭桂香, 谭志远. 百香果内生细菌多样性及促生长特性[J]. 生物技术通报, 2022, 38(1): 86-97. |
[12] | 朱海云, 马瑜, 柯杨, 李勃. 猕猴桃溃疡病菌拮抗菌的筛选、鉴定及其对植物病原真菌的抗性[J]. 生物技术通报, 2021, 37(6): 66-72. |
[13] | 雷海英, 赵青松, 杨潇, 王毛毛, 白洁, 孙永琪, 王志军. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9): 157-166. |
[14] | 靳海洋, 王慧, 张燕辉, 胡天龙, 林志斌, 刘本娟, 蔺兴武, 谢祖彬. 稻田土壤固氮菌株的分离筛选及促生潜力[J]. 生物技术通报, 2020, 36(6): 73-82. |
[15] | 冯光志, 石慧, 刘博, 吴玉婷, 王月琳, 石玉. 小龙虾肠道产纤维素酶细菌的分离与鉴定[J]. 生物技术通报, 2020, 36(2): 65-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||