生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 173-179.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0264
汤佳乐1,2,3(), 徐海1,3, 苑平1,3, 何科佳1,3, 王仁才2(), 卜范文1,3()
收稿日期:
2020-03-11
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
汤佳乐,男,博士,助理研究员,研究方向:果树种质资源与生物技术;E-mail: 基金资助:
TANG Jia-le1,2,3(), XU Hai1,3, YUAN Ping1,3, HE Ke-jia1,3, WANG Ren-cai2(), BU Fan-wen1,3()
Received:
2020-03-11
Published:
2020-10-26
Online:
2020-11-02
摘要:
植物热激蛋白90(Heat shock protein 90,Hsp90s)是普遍存在和高度保守的一类热激蛋白基因家族。在热胁迫条件下,Hsp90s在协助蛋白质折叠、细胞内转运、维持和降解以及促进细胞信号传导方面发挥重要作用。近年来,植物Hsp90s在高温胁迫下的产生、分类与定位和基因表达的调控及生物学功能等方面的研究取得较大进展。系统综述了植物Hsp90s结构和Hsp90s与植物耐热性的研究进展,以期为基因工程方法改良作物耐热性提供参考。
汤佳乐, 徐海, 苑平, 何科佳, 王仁才, 卜范文. 植物Hsp90s与耐热性关系的研究进展[J]. 生物技术通报, 2020, 36(10): 173-179.
TANG Jia-le, XU Hai, YUAN Ping, HE Ke-jia, WANG Ren-cai, BU Fan-wen. Advance in Relationship Between Heat Shock Protein 90s and Thermo-Tolerance in Plants[J]. Biotechnology Bulletin, 2020, 36(10): 173-179.
[1] |
Kerr RA. Global warming is changing the world[J]. Science, 2007,316:188-190.
URL pmid: 17431148 |
[2] |
Mittler R, Finka A, Goloubinoff P. How do plants feel the heat?[J]. Trends Biochem Sci, 2012,37:118-125.
URL pmid: 22236506 |
[3] |
Johnson JL, Brown C. Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms[J]. Cell Stress Chaperones, 2009,14:83-94.
URL pmid: 18636345 |
[4] |
Lindquist S, Craig EA. The heat-shock proteins[J]. Annu Rev Genet, 1988,22:631-677.
URL pmid: 2853609 |
[5] |
Wang WX, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci, 2004,9:244-252.
URL pmid: 15130550 |
[6] |
Driedonks N, Xu JM, Peters JL, et al. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat[J]. Front Plant Sci, 2015,6:999.
URL pmid: 26635827 |
[7] | Chen J, Gao T, Wan S, et al. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant(Camellia sinensis)[J]. International Journal of Molecular Sciences, 2018,19:2633. |
[8] |
Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009,176(4):583-590.
URL pmid: 26493149 |
[9] | 栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展[J]. 生物技术通报, 2016,32(2):7-13. |
Li ZY, Long RC, Zhang TJ, et al. Research progress on plant Heat shock protein[J]. Biotechnology Bulletin, 2016,32(2):7-13. | |
[10] |
Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Curr Opin Plant Biol, 2005,8:86-92.
URL pmid: 15653405 |
[11] |
Reddy PS, Thirulogachandar V, Vaishnavi CS, et al. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation[J]. Gene, 2011,474:29-38.
URL pmid: 21185362 |
[12] |
Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery[J]. Annu Rev Biochem, 2006,75:271-294.
URL pmid: 16756493 |
[13] |
Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms[J]. Mol Cell, 2010,40:238-252.
URL pmid: 20965419 |
[14] | 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016,22(6):52-60. |
Zhu JK, Ni JP. Abiotic stress signaling and responses in plants[J]. China Rice, 2016,22(6):52-60. | |
[15] |
Zhang J, Li JB, Liu BB. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses[J]. BMC Genomics, 2013,14:532.
doi: 10.1186/1471-2164-14-532 URL pmid: 23915275 |
[16] |
Oh SE, Yeung C, Babaei-Rad R, et al. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis[J]. BMC Research Notes, 2014,7(1):1-15.
doi: 10.1186/1756-0500-7-1 URL |
[17] |
Song H, Fan P, Shi W, et al. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses[J]. Journal of Plant Physiology, 2010,167(14):1172-1178.
URL pmid: 20493581 |
[18] |
Kravats AN, Hoskins JR, Reidy M, et al. Functional and physical interaction between yeast Hsp90 and Hsp70[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(10):E2210-E2219.
URL pmid: 29463764 |
[19] |
Cha JY, Ermawati N, Jung MH, et al. Characterization of orchardgrass p23, a flowering plant Hsp90 cohort protein[J]. Cell Stress & Chaperones, 2009,14(3):233-243.
URL pmid: 18800239 |
[20] |
Moran Luengo T, Kityk R, Mayer MP, et al. Hsp90 breaks the deadlock of the Hsp70 chaperone system[J]. Molecular Cell, 2018,70(3):545-552.
URL pmid: 29706537 |
[21] |
Herrenkohl LR, Politch JA. Effects of prenatal stress on the estrous cycle of female off spring as adults[J]. Experientia, 1978,34:1240-1241.
URL pmid: 569073 |
[22] |
Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:achievements and challenges[J]. Plant Sci, 2013,205:38-47.
URL pmid: 23498861 |
[23] | Chang CC, Huang PS, Lin HR, et al. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation[J]. Plant Cell Physio, 2007,48:1098-1107. |
[24] |
Chang HC, Tang YC, Hayer-Hartl M, et al. SnapShot:molecular chaperones. Part I.[J] Cell, 2007,128(1):212.
URL pmid: 17990378 |
[25] | 李冰, 刘宏涛, 孙大业, 等. 植物热激反应的信号转导机理[J]. 植物生理与分子生物学学报, 2002,28(1):1-10. |
lLi B, Liu HT, Sun DY, et al. Signal transduction mechanism of plant heat shock response[J]. Journal of Plant Physiology and Molecular Biology, 2002,28(1):1-10. | |
[26] | 张海. 水稻OsHSP90基因家族功能研究[D]. 成都:四川农业大学, 2016. |
Zhang H. Function analysis of the OsHSP90 family in rice[D]. Chengdu:Sichuan Agricultural University, 2016. | |
[27] |
Mendonca YA, Ramos CH. Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis(sweet orange)[J]. Plant Physiology and Biochemistry, 2012,50(1):87-94.
URL pmid: 21873074 |
[28] | Ramachandra KR, Chaudhary S, Patil P, et al. The 90 kDa heat shock protein(hsp90)is expressed throughout Brassica napus seed development and germination[J]. Plant Science, 1998,131(2):131-137. |
[29] |
Sable A, Rai KM, Choudhary A, et al. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development[J]. Scientific Reports, 2018,8:3620.
URL pmid: 29483524 |
[30] |
Wang GF, Wei X, Fan R, et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90(Hsp90):functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance[J]. New Phytol, 2011,191:418-431.
URL pmid: 21488877 |
[31] | Kozeko LY. The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions(Arabidopsis thaliana)[J]. Cytology and Genetics, 2019,53(2):143-161. |
[32] |
Prasinos C, Krampis K, Samakovli D, et al. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development[J]. Journal of Experimental Botany, 2005,56(412):633-644.
URL pmid: 15582930 |
[33] |
Samakovli D, Thanou A, Valmas C, et al. Hsp90 canalizes developmental perturbation[J]. Journal of Experimental Botany, 2007,58(13):3513-3524.
URL pmid: 18057034 |
[34] |
Song YH, Estrada DA, Johnson RS, et al. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America 2014,111(49):17672-17677.
URL pmid: 25422419 |
[35] | Inoue H, Li M, Schnell DJ. An essential role for chloroplast heat shock protein 90(Hsp90C)in protein import into chloroplasts[J]. Proceedings of the National Academy of Sciences, 2013,110(8):3173-3178. |
[36] |
Ishiguro S, Watanabe Y, Ito N, et al. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins[J]. The EMBO Journal, 2002,21(5):898-908.
URL pmid: 11867518 |
[37] |
Samakovli D, Ticha T, Vavrdova T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis[J]. Molecular Plant, 2020. DOI: https://doi.org/10.1016/j.molp.2020.01.001.
URL pmid: 32956899 |
[38] |
Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Curr Opin Plant Biol, 2005,8:86-92.
URL pmid: 15653405 |
[39] |
Xu J, Xue C, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90(Hsp90)gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One, 2013,8:e69810.
URL pmid: 23936107 |
[40] |
Neuwald AF, Aravind L, Spouge JL, et al. A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes[J]. Genome Res, 1999,9:27-43.
URL pmid: 9927482 |
[41] |
Sangster TA, Bahrami A, Wilczek A, et al. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels[J]. PLoS One, 2007,2(7):e648.
URL pmid: 17653275 |
[42] |
Song Z, Pan F, Yang C, et al. Genome-wide identification and expression analysis of HSP90 gene family in Nicotiana tabacum[J]. BMC Genetics, 2019,20(1):35.
URL pmid: 30890142 |
[43] |
Agarwal G, Garg V, Kudapa H, et al. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea[J]. Plant Biotechnology Journal, 2016,14(7):1563-1577.
doi: 10.1111/pbi.12520 URL pmid: 26800652 |
[44] | Chaudhary R, Baranwal VK, Kumar R, et al. Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress conditions and reproductive development[J]. Functional & Integrative Genomic, 2019,19(6):1007-1022. |
[45] |
Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020,63(5):635-674.
URL pmid: 32246404 |
[46] |
Li WH, Wei ZW, Qiao ZH, et al. Proteomics analysis of alfalfa response to heat stress[J]. PLoS One, 2013,8(12):e82725.
doi: 10.1371/journal.pone.0082725 URL pmid: 24324825 |
[47] |
Hu WH, Hu GC, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009,176, 583-590.
URL pmid: 26493149 |
[48] |
Prasad BD, Goel S, Krishna P. In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and Rice as putative co-chaperones of Hsp90/Hsp70[J]. PLoS One, 2010,5:e12761.
URL pmid: 20856808 |
[49] | Zhang H, Li L, Ye T, et al. Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice[J]. Biotechnology & Biotechnological Equipment, 2016,30(4):669-676. |
[50] |
Huang Y, Xuan H, Yang C, et al. GmHsp90A2 is involved in soybean heat stress as a positive regulator[J]. Plant Science, 2019,285:26-33.
URL pmid: 31203891 |
[51] | Kim SH, Lee JH, Seo KI, et al. Characterization of a Novel DWD protein that participates in heat stress response in Arabidop-sis[J]. Molecules and Cells, 2014,37(11):833-840. |
[52] |
Xu X, Song H, Zhou Z, et al. Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress[J]. Biotechnology Letters, 2010,32(7):979-987.
URL pmid: 20229063 |
[53] |
Yamada K, Fukao Y, Hayashi M, et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2007,282(52):37794-37804.
doi: 10.1074/jbc.M707168200 URL pmid: 17965410 |
[1] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[2] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[3] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[4] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[5] | 毕愿坤, 李丽, 朱传应, 王彦芹. 生境、温度及外源激素对花花柴花器官发育的影响[J]. 生物技术通报, 2021, 37(4): 28-34. |
[6] | 刘敏, 房玉林. 葡萄ERECTA基因过表达提高拟南芥生长量和耐热性[J]. 生物技术通报, 2020, 36(6): 46-53. |
[7] | 李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157. |
[8] | 李卫娜, 申冬玲, 张煜星, 刘学通, 伊日布斯. Mangrovibacterium sp. SH-52耐热内切型海藻酸裂解酶基因的克隆及酶学鉴定[J]. 生物技术通报, 2020, 36(12): 82-90. |
[9] | 张瑞平, 杨峰, 陈乐章, 邓星光, 张大伟. 交替呼吸途径在油菜素内酯调控本氏烟响应高温胁迫中的作用研究[J]. 生物技术通报, 2020, 36(10): 8-14. |
[10] | 王彦芹, 石新建, 李志军. 沙漠植物花花柴幼苗对高温耐受性评价[J]. 生物技术通报, 2017, 33(4): 157-163. |
[11] | 贺茜, 王艳萍, 陈玉珍, 卢存福. 沙冬青AmHsa32基因超表达提高转基因烟草抗热性[J]. 生物技术通报, 2015, 31(5): 100-105. |
[12] | 潘孝武,李小湘,黎用朝,姚奕,刘文强,盛新年. 水稻生殖发育期耐热性的分子遗传机制研究进展[J]. 生物技术通报, 2015, 31(4): 40-46. |
[13] | 刘琳, 贾培培, 卢伟东, 郭奇林, 郭立忠. 真姬菇在高温胁迫下的差异表达蛋白分析[J]. 生物技术通报, 2014, 0(5): 142-147. |
[14] | 张珂, 翁群芳, 付昊昊. 昆虫热激蛋白90的研究进展[J]. 生物技术通报, 2014, 0(2): 15-23. |
[15] | 王延久;王长法;鞠志花;何剑斌;黄金明;李建斌;仲跻峰;李秋玲;. 热休克转录因子1与机体耐热性的相关研究[J]. , 2010, 0(03): 38-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||