生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 132-140.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0024
梁旺旺(), 李成龙, 陈文智, 丰志华, 蔡少丽(), 陈骐
收稿日期:
2021-01-07
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
梁旺旺,男,硕士研究生,研究方向:CRISPR/Cas9基因修饰技术的开发应用;E-mail: 基金资助:
LIANG Wang-wang(), LI Cheng-long, CHEN Wen-zhi, FENG Zhi-hua, CAI Shao-li(), CHEN Qi
Received:
2021-01-07
Published:
2021-12-26
Online:
2022-01-19
摘要:
非洲猪瘟(African swine fever,ASF)与伪狂犬病(pseudorabies,PR)分别由非洲猪瘟病毒(African swine fever virus,ASFV)与伪狂犬病毒感染(Pseudorabies virus,PRV)引起的猪(或部分猪)高致死、传染性疾病。目前非洲猪瘟无商业化疫苗,两种疾病均给养猪业造成了巨大的经济损失。本研究以PRV-Fa经典毒株为载体通过CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/Cas9)基因编辑技术将ASFV(Pig/HLJ/18)CD2v(EP402R)与p12(O61R)基因分别插入PRV-Fa株TK(UL23)及gI(US7)基因位点中,成功构建TK及gI缺失且重组表达ASFV CD2v与P12的重组弱毒株PRV-∆gI-(P12)-∆TK-(CD2v)。通过基因测序、蛋白质免疫印迹(Western blot)与免疫荧光表明重组毒株遗传性状稳定且CD2v与P12在Vero细胞中稳定表达。通过一步生长曲线、噬斑生长测定、小鼠毒力测试及小鼠病理学评估表明与野生型毒株PRV-Fa相比重组毒株毒力明显减弱,对小鼠不具致死能力,该重组毒株为研究预防PR及ASF的新型疫苗提供了新的选择。
梁旺旺, 李成龙, 陈文智, 丰志华, 蔡少丽, 陈骐. 表达非洲猪瘟病毒CD2v与P12蛋白的重组伪狂犬病毒的构建[J]. 生物技术通报, 2021, 37(12): 132-140.
LIANG Wang-wang, LI Cheng-long, CHEN Wen-zhi, FENG Zhi-hua, CAI Shao-li, CHEN Qi. Construction of Recombinant Pseudorabies Virus Expressing CD2v and P12 Proteins of African Swine Fever Virus[J]. Biotechnology Bulletin, 2021, 37(12): 132-140.
Primer | Primer sequence |
---|---|
sgRNA-TK | CGCGGGGTCGTACGTGCTGC |
sgRNA-gI | TGCCCGAGCCGATGGCGTAC |
表1 靶向CD2v与p12基因的sgRNA序列
Table 1 sgRNA sequences targetting CD2v and p12 gene
Primer | Primer sequence |
---|---|
sgRNA-TK | CGCGGGGTCGTACGTGCTGC |
sgRNA-gI | TGCCCGAGCCGATGGCGTAC |
Primer | Primer sequence |
---|---|
3.1-CD2v | GTCGACGCCACGAACAC |
TCTAGAACGTGTTGACCAGCAT | |
3.1-p12 | GTCGACATGATGATGGTGGC |
TCTAGAACGACGATCGTGGG | |
PRV-TK | CTCGATGACGAAGCACAGGT |
TTGACCAGCATGGCGTAGAC | |
PRV-p12 | GACGCTGCTGTTTCTGGAGG |
TCTAGAACGTGTTGACCAGCAT | |
PRV-CD2v-F | CGCCCAAGAAGATCAGGAGG |
TAGGGGGCGTACTTGGCATA | |
PRV-CD2v-R | CACAGTCCCCGAGAAGTTGG |
CCCAGCACCATGGCTATCTT | |
PRV-p12-F | CTCGATGACGAAGCACAGGT |
TAGGGGGCGTACTTGGCATA | |
PRV-p12-R | AGCATGATGACACCACTTCCA |
TGATGTCCCCGACGATGAAG |
表2 PCR扩增引物与验证引物
Table 2 PCR primers for amplification and verfication
Primer | Primer sequence |
---|---|
3.1-CD2v | GTCGACGCCACGAACAC |
TCTAGAACGTGTTGACCAGCAT | |
3.1-p12 | GTCGACATGATGATGGTGGC |
TCTAGAACGACGATCGTGGG | |
PRV-TK | CTCGATGACGAAGCACAGGT |
TTGACCAGCATGGCGTAGAC | |
PRV-p12 | GACGCTGCTGTTTCTGGAGG |
TCTAGAACGTGTTGACCAGCAT | |
PRV-CD2v-F | CGCCCAAGAAGATCAGGAGG |
TAGGGGGCGTACTTGGCATA | |
PRV-CD2v-R | CACAGTCCCCGAGAAGTTGG |
CCCAGCACCATGGCTATCTT | |
PRV-p12-F | CTCGATGACGAAGCACAGGT |
TAGGGGGCGTACTTGGCATA | |
PRV-p12-R | AGCATGATGACACCACTTCCA |
TGATGTCCCCGACGATGAAG |
图2 同源重组片段制备及重组位点验证 A:M:DL5000 DNA maker,1:以pcDNA3.1-PRV-TK-P12为模板通过PCR扩增出带同源臂的p12片段,2:以pcDNA3.1-PRV-gI-CD2v为模板通过PCR扩增出带同源臂的CD2v片段,3和4:空白对照(以水为模板)。B:M:DL5000 DNA maker,1:以野生型PRV基因组为模板通过PCR扩增的TK基因片段,2:以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增的CD2v插入后的TK基因片段,3:以野生型PRV基因组为模板通过PCR扩增的gI基因片段,泳道4为以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增的CD2v插入后的gI基因片段。C:M:DL2000 DNA maker,1:以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增含部分上游同源臂及CD2v基因片段,2:以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增含部分下游同源臂及CD2v基因片段,3:以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增含部分上游同源臂及gI基因片段,4:以重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)基因组为模板通过PCR扩增含部分下游同源臂及gI基因片段。D:图2-C中PCR产物测序结果
Fig.2 Preparation of homologous recombinant fragment and verification of recombination sites A:M:DL 5000 DNA marker. 1:PCR results of p12 gene with both sides donor from pcDNA3.1-PRV-TK-P12. 2:PCR results of CD2v gene with both sides donor from pcDNA3.1-PRV-gI-CD2v. 3 and 4:Blank control(water as template). B:M:DL 5000 DNA marker. 1:PCR results of TK gene from wild-type PRV. 2:PCR results of TK gene from PRV-∆gI-(p12)-∆TK-(CD2v). 3:PCR results of gI gene from wild-type PRV. 4:PCR results of gI gene from PRV-∆gI-(p12)-∆TK-(CD2v). C:M:DL2000 marker. 1:PCR results of CD2v gene with 5' donor from PRV-∆gI-(p12)-∆TK-(CD2v). 2:PCR results of CD2v gene with 3' donor from PRV-∆gI-(p12)-∆TK-(CD2v). 3:PCR results of gI gene with 5' Donor from PRV-∆gI-(p12)-∆TK-(CD2v). 4:PCR results of gI gene with 3' donor from PRV-∆gI-(p12)-∆TK-(CD2v). D:Sequencing analysis from Fig.2-C
图3 遗传稳定性鉴定 A:通过PCR技术检测重组病毒稳定遗传情况。M:DL5000 DNA maker;1、3、5:分别为重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)在10、20、30代p12基因PCR结果;2、4、6:分别为重组病毒PRV-∆gI-(p12)-∆TK-(CD2v)在10、20、30代CD2v基因PCR结果。B:通过Western blot技术检测感染PRV-∆gI-(p12)-∆TK-(CD2v)的Vero细胞中CD2v蛋白表达情况。M2:蛋白 Marker;C1:Vero细胞对照组;C2:感染PRV-Fa组;C3:感染PRV-∆gI-(p12)-∆TK-(CD2v)组。C:通过免疫荧光技术检测EGFP与mCherry基因在PRV-∆gI-(p12)-∆TK-(CD2v)表达情况
Fig.3 Identification of genetic stability A:PCR detection for genetic stability of recombinant virus. M:DL5000 maker; 1,3 and 5:the PCR result of p12 gene from 10th,20th and 30th Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)recombinant virus,respectively; 2,4 and 6:the PCR result of CD2v gene from 10th,20th and 30th Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v),respectively. B:The expression of CD2v protein in Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)recombinant virus is confirmed by Western blot. Lane M2:Protein marker; C1:control(Vero cells); C2:Vero cells infected with PRV-Fa; C3:Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v). C:Expression of EGFP and mCherry in PRV-∆gI-(p12)-∆TK-(CD2v)via immunofluorescence analysis
图4 重组病毒一步生长曲线与小鼠生存曲线 A:未感染病毒的Vero细胞的结晶紫染色;B:感染PRV-Fa病毒的Vero细胞结晶的紫染色;C:感染PRV-∆gI-(p12)-∆TK-(CD2v)病毒的Vero细胞结晶的紫染色;D:噬班面积统计结果;E:病毒在Vero 细胞中扩增后按照12 h、24 h、36 h、48 h、72 h的时间梯度收样后用 Karber法计算绘制一次性生长曲线;F:5周龄ICR小鼠右后腿肌肉注射病毒逐天观察小鼠存活情况绘制生存曲线(n=15)。各组数据差异性分析用 Unpaired t-test(Graphpad Prism 5.0,Graphpad software,San Diego,CA,USA),*P<0.05;**P<0.01;***P<0.001;ns(not significant)
Fig.4 One-step growth curve of recombinant viruses and mice’s survival curve A:Crystal violet staining of Vero cells(mock). B:Crystal violet staining of Vero cells infected with PRV-Fa virus. C:Crystal violet staining of Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)virus. D:Statistical results of the plaque area. E:Virus sample after the amplification in Vero cells was collected at 12,24,36,and 48 h,and the virus titer was calculated by the Karber method to draw a one-step growth curve. F:Five-week-old ICR mice were injected with viruses into the right hind leg to observe mice’s survival daily(n = 15/each group). All data were analysed by unpaired t-test(GraphPad Prism 5.0,GraphPad Software,San Diego,CA,USA),*P<0.05;**P<0.01;***P<0.001;ns(not significant)
图5 小鼠组织病理学切片 A:心脏HE染色;B:肝脏HE染色;C:脾脏HE染色,PRV-∆gI-(p12)-∆TK-(CD2v)感染组的脾脏有大量的免疫细胞聚集;D:肺脏HE染色,PRV-Fa感染组的肺脏有明显肿大;E:肾脏HE染色;F:大脑HE染色,PRV-Fa感染组的大脑内有免疫细胞浸润
Fig.5 Histopathological sections of mice tissues A:HE(Hematoxylin-Eosin)staining of heart. B:HE staining of liver. C:HE staining of spleen,there are a lot of immune cells accumulated in the spleens of PRV-∆gI-(p12)-∆TK-(CD2v)infected group. D:HE(Hematoxylin-Eosin)staining of lung,the lung of PRV-Fa infected group was swollen obviously. E:HE staining of kidney. F:HE staining of brain,the brain of PRV-Fa infected group showed a large number of immune cell accumulated
[1] |
Galindo I, Alonso C. African swine fever virus:a review[J]. Viruses, 2017, 9(5). DOI: 10. 3390/v9050103.
doi: 10. 3390/v9050103 |
[2] |
Quembo CJ, Jori F, Vosloo W, et al. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype[J]. Transbound Emerg Dis, 2018, 65(2):420-431.
doi: 10.1111/tbed.12700 pmid: 28921895 |
[3] |
Zhou X, Li N, et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65(6):1482-1484.
doi: 10.1111/tbed.2018.65.issue-6 URL |
[4] | Sánchez EG, Pérez-Núñez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus[J]. Vaccines(Basel), 2017, 5(4):E42. |
[5] | Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-e01218. |
[6] |
Goatley LC, Dixon LK. Processing and localization of the African swine fever virus CD2v transmembrane protein[J]. J Virol, 2011, 85(7):3294-3305.
doi: 10.1128/JVI.01994-10 URL |
[7] | Monteagudo PL, Lacasta A, López E, et al. BA71ΔCD2:a new recombinant live attenuated African swine fever virus with cross-protective capabilities[J]. J Virol, 2017, 91:e01058-17. |
[8] |
Angulo A, Viñuela E, Alcamí A. Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12[J]. J Virol, 1993, 67(9):5463-5471.
pmid: 8350406 |
[9] | Jancovich JK, Chapman D, Hansen DT, et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins[J]. Journal of Virology, 2018, 92(8):e02219-17. |
[10] |
Pérez-Núñez D, Sunwoo SY, et al. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs[J]. Vet Immunol Immunopathol, 2019, 208:34-43.
doi: 10.1016/j.vetimm.2018.11.018 URL |
[11] |
Lopera-Madrid J, Osorio JE, He Y, et al. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine[J]. Vet Immunol Immunopathol, 2017, 185:20-33.
doi: 10.1016/j.vetimm.2017.01.004 URL |
[12] |
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine[J]. Microbiol Mol Biol Rev, 2005, 69(3):462-500.
doi: 10.1128/MMBR.69.3.462-500.2005 URL |
[13] |
Oláh P, Tombácz D, Póka N, et al. Characterization of pseudorabies virus transcriptome by Illumina sequencing[J]. BMC Microbiol, 2015, 15:130.
doi: 10.1186/s12866-015-0470-0 URL |
[14] |
Tong W, Li GX, Liang C, et al. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains[J]. Antivir Res, 2016, 130:110-117.
doi: 10.1016/j.antiviral.2016.03.002 pmid: 26946112 |
[15] |
Tang YD, Liu JT, Wang TY, et al. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system[J]. Virus Res, 2016, 225:33-39.
doi: 10.1016/j.virusres.2016.09.004 URL |
[16] |
Wu KK, Liu JM, Wang LX, et al. Current state of global African swine fever vaccine development under the prevalence and transmission of ASF in China[J]. Vaccines, 2020, 8(3):531.
doi: 10.3390/vaccines8030531 URL |
[17] |
Ramirez-Medina E, Vuono E, O’Donnell V, et al. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain[J]. Viruses, 2019, 11(7):599.
doi: 10.3390/v11070599 URL |
[18] | Revilla Y, Pérez-Núñez D, Richt JA. African swine fever virus biology and vaccine approaches[J]. Adv Virus Res, 2018, 100:41-74. |
[19] |
Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus[J]. Vaccines, 2019, 7(2):56.
doi: 10.3390/vaccines7020056 URL |
[20] |
Malogolovkin A, Burmakina G, Tulman ER, et al. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity[J]. J Gen Virol, 2015, 96(4):866-873.
doi: 10.1099/jgv.0.000024 URL |
[21] |
Ruiz-Gonzalvo F, Rodríguez F, Escribano JM. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus[J]. Virology, 1996, 218(1):285-289.
pmid: 8615037 |
[22] |
Jiang YB, Fang LR, Xiao SB, et al. Construction and immunogenicity of recombinant pseudorabies virus expressing the modified GP5m protein of porcine reproduction and respiratory syndrome virus[J]. Front Biol China, 2007, 2(1):85-91.
doi: 10.1007/s11515-007-0015-5 URL |
[23] |
Feng ZH, Chen JH, Liang WW, et al. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice[J]. Virol J, 2020, 17(1):180.
doi: 10.1186/s12985-020-01450-7 URL |
[24] |
Qiu HJ, Tian ZJ, Tong GZ, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets[J]. Vet Immunol Immunopathol, 2005, 106(3/4):309-319.
doi: 10.1016/j.vetimm.2005.03.008 URL |
[25] | Abid M, Teklue T, Li YF, et al. Generation and immunogenicity of a recombinant pseudorabies virus co-expressing classical swine fever virus E2 protein and porcine Circovirus type 2 capsid protein based on fosmid library platform[J]. Pathogens, 2019, 8(4):E279. |
[1] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
[2] | 温亚亚, 宋丽, 汪巧菊, 潘志明, 焦新安. 新冠肺炎疫苗的研究现状及面临的挑战[J]. 生物技术通报, 2022, 38(7): 136-145. |
[3] | 马芳芳, 康碧静, 马春英, 刘振斌, 杨迪, 乔自林, 王明明, 马忠仁, 王家敏. Vero细胞基质流感疫苗研究进展[J]. 生物技术通报, 2022, 38(12): 137-143. |
[4] | 张爱莲, 巴雪丽, 王丹阳, 赵兵. 新疆荒漠肉苁蓉粗多糖对口蹄疫疫苗抗体和T细胞亚群的影响[J]. 生物技术通报, 2021, 37(9): 212-218. |
[5] | 赵鸿远, 王朝, 成温玉, 马宁宁, 李曼, 魏小丽. 抗非洲猪瘟病毒制剂的研究进展[J]. 生物技术通报, 2021, 37(5): 174-181. |
[6] | 殷俊磊, 张艳芳, 邹凡雨, 潘鹏涛, 段艳红, 仇书兴. 鸡白痢沙门菌sptP基因缺失株的构建及其免疫保护效力评价[J]. 生物技术通报, 2021, 37(2): 122-128. |
[7] | 陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226. |
[8] | 王彩霞, 杜方原, 林祥梅, GrzegorzWozniakowski, 王勤, 冯春燕, 吴绍强. 稳定表达非洲猪瘟病毒P54蛋白的Vero细胞系的建立[J]. 生物技术通报, 2020, 36(5): 139-144. |
[9] | 黄凤君, 李佳皓, 刘瑞林, 余丽萍, 王西瑶, 李立芹. 马铃薯StKUP12的表达及参与钾营养的功能研究[J]. 生物技术通报, 2020, 36(4): 54-60. |
[10] | 胡峰, 王庆, 李莹莹, 曾伟伟, 王高学, 朱斌, 王英英, 尹纪元. 单壁碳纳米管载锦鲤疱疹病毒ORF149核酸疫苗的构建[J]. 生物技术通报, 2020, 36(2): 206-213. |
[11] | 李鹏昊, 梁严予, 王彦伟, 关洋, 逄文强, 田克恭. 非洲猪瘟病毒K196R和A240L蛋白的可溶性表达及酶活力分析[J]. 生物技术通报, 2020, 36(11): 70-75. |
[12] | 欧云文, 刘俐君, 代军飞, 马炳, 张永光, 张杰. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019, 35(6): 156-163. |
[13] | 郎巧利, 吴梦, 黄楠, 何琦琳, 葛良鹏, 杨希. 伪狂犬病毒的gE蛋白胞外区真核表达以及单克隆抗体制备[J]. 生物技术通报, 2019, 35(11): 96-103. |
[14] | 刘世旭 ,王庆 ,方珍珍 ,常藕琴 ,曾伟伟 ,黄志斌. 水产动物口服疫苗的研究进展[J]. 生物技术通报, 2018, 34(6): 30-37. |
[15] | 刘蓉蓉. 转基因植物生产疫苗和药物的研发进展[J]. 生物技术通报, 2017, 33(9): 17-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||