生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 162-174.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0892
收稿日期:
2020-07-17
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
翟旭航,男,硕士研究生,研究方向:生物化工;E-mail:ZHAI Xu-hang(), LI Xia(), YUAN Ying-jin
Received:
2020-07-17
Published:
2021-03-26
Online:
2021-04-02
摘要:
木质纤维素生物质是地球上最丰富的可再生生物资源。随着化石能源的消耗及环境的污染,以取代石化燃料为目标的由生物质向生物燃料的转化受到了广泛的关注。木质纤维素有很强的天然抗降解屏障,需先通过物理、化学及微生物等手段进行预处理,进而以更低的成本和更高的效率转化为生物燃料及其他高附加值产品。本文在总结酸碱等传统预处理方法优缺点的基础上,综述了各种组合预处理对这些传统预处理方法的改进,以及γ-戊内酯预处理、低共熔溶剂预处理、微生物联合体生态位预处理这些新型预处理技术的研究进展,总结了木质素高值化过程中木质素的保护、解聚、改性的新方法,指出了预处理方法在工业生产中的应用及不足,以期为木质纤维素生物质转化的研究提供参考。
翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174.
ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method[J]. Biotechnology Bulletin, 2021, 37(3): 162-174.
预处理方法 | 活性成分 | 作用机理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
离子液体预处理 | 大有机阳离子和小无机阴离子 | 聚合物的分离 | 环保,可用温度范围广 | 成本高 | [ |
蒸汽爆破预处理 | 高温蒸汽,可能有催化剂辅助 | 半纤维素的水解,内部纤维的分离 | 木质素转化,半纤维素溶解,性价比高 | 反应温度与压力较高 | [ |
稀酸预处理 | H2SO4,H3PO4等强酸 | 半纤维素的水解 | 反应快,不需要回收酸 | 反应温度与压力较高,会生成抑制剂 | [ |
碱预处理 | NaOH,Na2CO3等类似的碱化合物 | 木质素的提取 | 常温预处理,破坏木质素 | 无法实现糖的降解,反应后需加酸中和 | [ |
辐照预处理 | 伽马射线,钴60和铯137是常用的放射性物质 | 化学键破坏 | 简单可靠,可以促进菌株生长 | 需同其他预处理方法结合才能发挥最大作用 | [ |
机械破碎预处理 | 粒径的降低 | 表面积提高,强化接触 | 降低了粒径和纤维素结晶度,有效提高了后续其他预处理方法的效率 | 不能去除木质素和半纤维素,高能耗,成本高 | [ |
超声预处理 | 超声波 | 化学键破坏 | 不需加入其他试剂 | 大规模反应太过昂贵 | [ |
氧化预处理 | 臭氧,光等氧化剂 | 降解木质素 | 环保,高效移除木质素 | 成本高 | [ |
有机溶剂预处理 | 有机溶剂,如乙醇、丁醇等,可能有催化剂辅助 | 木质素的提取 | 可以得到纯木质素,纤维素和半纤维素 | 成本高,对环境和后续发酵有一定影响 | [ |
表1 传统预处理方法的活性成分、作用机理、优点及缺点
预处理方法 | 活性成分 | 作用机理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
离子液体预处理 | 大有机阳离子和小无机阴离子 | 聚合物的分离 | 环保,可用温度范围广 | 成本高 | [ |
蒸汽爆破预处理 | 高温蒸汽,可能有催化剂辅助 | 半纤维素的水解,内部纤维的分离 | 木质素转化,半纤维素溶解,性价比高 | 反应温度与压力较高 | [ |
稀酸预处理 | H2SO4,H3PO4等强酸 | 半纤维素的水解 | 反应快,不需要回收酸 | 反应温度与压力较高,会生成抑制剂 | [ |
碱预处理 | NaOH,Na2CO3等类似的碱化合物 | 木质素的提取 | 常温预处理,破坏木质素 | 无法实现糖的降解,反应后需加酸中和 | [ |
辐照预处理 | 伽马射线,钴60和铯137是常用的放射性物质 | 化学键破坏 | 简单可靠,可以促进菌株生长 | 需同其他预处理方法结合才能发挥最大作用 | [ |
机械破碎预处理 | 粒径的降低 | 表面积提高,强化接触 | 降低了粒径和纤维素结晶度,有效提高了后续其他预处理方法的效率 | 不能去除木质素和半纤维素,高能耗,成本高 | [ |
超声预处理 | 超声波 | 化学键破坏 | 不需加入其他试剂 | 大规模反应太过昂贵 | [ |
氧化预处理 | 臭氧,光等氧化剂 | 降解木质素 | 环保,高效移除木质素 | 成本高 | [ |
有机溶剂预处理 | 有机溶剂,如乙醇、丁醇等,可能有催化剂辅助 | 木质素的提取 | 可以得到纯木质素,纤维素和半纤维素 | 成本高,对环境和后续发酵有一定影响 | [ |
生物质 | DES | 时间/h | 温度/℃ | 主要产物 | 产率 | 参考文献 |
---|---|---|---|---|---|---|
玉米秸秆 | ChCl:(1.甲酸2.尿素3.甘油4.乙酸5.草酸6.丙二酸7.柠檬酸) | 0.5-3 | 90-130 | 生物丁醇 | 对于1来说,葡萄糖:99%(17 g/L);丁醇:5.6 g/L(0.17 g/g葡萄糖) | [ |
柳树 | ChCl:(1.乳酸2.甘油) 3.氯仿:尿素 | 6-42 | 90-120 | 木质素 | 对于1来说,产物纯度为94.5%,产率为91.8% | [ |
稻草 | ChCl:(1.苹果酸2.柠檬酸3.酒石酸4.乳酸5.草酸6.丙二酸7.乙二醇8. 1,2丙二醇)9.氯仿:尿素10. ChCl:甘油 | 0.5-12 | 60-121 | 木质素 葡萄糖 乙醇 | 对于4来说,木质素移除率为57.2%;对于10来说,葡萄糖得率为87.1%,乙醇得率为89.5% | [ |
云杉锯末 | ChCl:(1.硼酸2.甘油) 3.甜菜碱:甘油 | 24 | 80 | 葡萄糖 | 酶解后得率小于20% | [ |
表2 用于生物质预处理的不同DES方法
生物质 | DES | 时间/h | 温度/℃ | 主要产物 | 产率 | 参考文献 |
---|---|---|---|---|---|---|
玉米秸秆 | ChCl:(1.甲酸2.尿素3.甘油4.乙酸5.草酸6.丙二酸7.柠檬酸) | 0.5-3 | 90-130 | 生物丁醇 | 对于1来说,葡萄糖:99%(17 g/L);丁醇:5.6 g/L(0.17 g/g葡萄糖) | [ |
柳树 | ChCl:(1.乳酸2.甘油) 3.氯仿:尿素 | 6-42 | 90-120 | 木质素 | 对于1来说,产物纯度为94.5%,产率为91.8% | [ |
稻草 | ChCl:(1.苹果酸2.柠檬酸3.酒石酸4.乳酸5.草酸6.丙二酸7.乙二醇8. 1,2丙二醇)9.氯仿:尿素10. ChCl:甘油 | 0.5-12 | 60-121 | 木质素 葡萄糖 乙醇 | 对于4来说,木质素移除率为57.2%;对于10来说,葡萄糖得率为87.1%,乙醇得率为89.5% | [ |
云杉锯末 | ChCl:(1.硼酸2.甘油) 3.甜菜碱:甘油 | 24 | 80 | 葡萄糖 | 酶解后得率小于20% | [ |
底物 | 产物 | 微生物 | 产物浓度/(g·L-1) | 微生物联合体的主要特性 | 参考文献 |
---|---|---|---|---|---|
预处理并水解后的甘蔗渣 | 乙醇 | 大肠杆菌,酿酒酵母进行木糖发酵与葡萄糖发酵产乙醇 | 24.9 | 同时利用两种糖,没有碳分解代谢物的抑制,缩短了发酵时间(<30 h) | [ |
碱提取后的带壳玉米芯 | 丙酮,丁醇,乙醇 | 纤维素分解菌,嗜热念珠菌 | 22.1 | 工程化的嗜温纤维素分解菌提供了可溶性糖和丁酸,嗜热念珠菌将己糖,戊糖和丁酸转化为最终产品 | [ |
去木质素的稻草 | 丁酸 | 热纤梭菌,丁酸梭菌 | 33.9 | 热纤梭菌将纤维素分解并提供了可溶性的糖,丁酸梭菌将糖和副产物转化为丁酸 | [ |
去木质素的稻草 | 丁醇 | 热纤梭菌,糖基丙酮丁酸梭菌 | 5.5 | 热纤梭菌分解纤维素提供了可溶性的糖,在温度从55℃降为30℃后,延迟接种糖基丙酮丁酸梭菌,将可溶性糖转化为丁醇 | [ |
预处理后的玉米秸秆 | 异丁醇 | 里氏木霉,大肠杆菌 | 1.88 | 里氏木霉分解纤维素提供了可溶性糖,工程化的大肠杆菌将这些糖转化为异丁醇 | [ |
表3 不同微生物的组合以处理不同类型的木质纤维素材料
底物 | 产物 | 微生物 | 产物浓度/(g·L-1) | 微生物联合体的主要特性 | 参考文献 |
---|---|---|---|---|---|
预处理并水解后的甘蔗渣 | 乙醇 | 大肠杆菌,酿酒酵母进行木糖发酵与葡萄糖发酵产乙醇 | 24.9 | 同时利用两种糖,没有碳分解代谢物的抑制,缩短了发酵时间(<30 h) | [ |
碱提取后的带壳玉米芯 | 丙酮,丁醇,乙醇 | 纤维素分解菌,嗜热念珠菌 | 22.1 | 工程化的嗜温纤维素分解菌提供了可溶性糖和丁酸,嗜热念珠菌将己糖,戊糖和丁酸转化为最终产品 | [ |
去木质素的稻草 | 丁酸 | 热纤梭菌,丁酸梭菌 | 33.9 | 热纤梭菌将纤维素分解并提供了可溶性的糖,丁酸梭菌将糖和副产物转化为丁酸 | [ |
去木质素的稻草 | 丁醇 | 热纤梭菌,糖基丙酮丁酸梭菌 | 5.5 | 热纤梭菌分解纤维素提供了可溶性的糖,在温度从55℃降为30℃后,延迟接种糖基丙酮丁酸梭菌,将可溶性糖转化为丁醇 | [ |
预处理后的玉米秸秆 | 异丁醇 | 里氏木霉,大肠杆菌 | 1.88 | 里氏木霉分解纤维素提供了可溶性糖,工程化的大肠杆菌将这些糖转化为异丁醇 | [ |
[1] | Watts N, Amann M, Arnell N, et al. The 2018 report of the lancet countdown on health and climate change:shaping the health of nations for centuries to come[J]. Lancet, 2018,6736(18):5-12. |
[2] |
Mori T, Tsuboi Y, Ishida N, et al. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose[J]. Scientific Reports, 2015,5(1):11848.
doi: 10.1038/srep11848 URL |
[3] | Knauf M, Moniruzzaman M. Lignocellulosic biomass processing:A perspective[J]. International Sugar Journal, 2004,106(1263):147-150. |
[4] | Saradhi I, Pandit G, Puranik V. Energy supply, demand and environmental analysis-a case study of Indian energy scenario[J]. International Journal of Civil and Enviromental Engineering, 2009,1(3):115-120. |
[5] |
Gomez, Leonardo D, Vanholme R, et al. Side by side comparison of chemical compounds generated by aqueous pretreatments of maize stover, miscanthus and sugarcane bagasse[J]. BioEnergy Research, 2014,7(4):1466-1480.
doi: 10.1007/s12155-014-9480-2 URL |
[6] |
An YX, Zong MH, Wu H, et al. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids:Biomass fractionation, enzymatic digestion and ionic liquid reuse[J]. Bioresource Technology, 2015,192:165-171.
doi: 10.1016/j.biortech.2015.05.064 URL pmid: 26026293 |
[7] |
Chandra RP, Arantes V, Saddler J. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose[J]. Bioresource Technology, 2015,185:302-307.
doi: 10.1016/j.biortech.2015.02.106 URL pmid: 25780906 |
[8] |
Michalska K, Miazek K, Krzystek L, et al. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass[J]. Bioresource Technology, 2012,119(10):72-78.
doi: 10.1016/j.biortech.2012.05.105 URL |
[9] |
Palmqvist E, Hahn Gerdal B. Fermentation of lignocellulosic hydrolysates. II:inhibitors and mechanisms of inhibition[J]. Bioresource Technology, 2000,74(1):25-33.
doi: 10.1016/S0960-8524(99)00161-3 URL |
[10] |
Alvira P, Tomas PE, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review[J]. Bioresource Technology, 2010,101(13):4851-4861.
URL pmid: 20042329 |
[11] |
Liu Y, Zhou H, Wang LY, et al. Improving Saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification[J]. Chemical Engineering Journal, 2016,287:302-312.
doi: 10.1016/j.cej.2015.10.086 URL |
[12] |
Liu Y, Guo L, Wang L, et al. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass[J]. Bioresource Technology, 2017,232(7):270-277.
doi: 10.1016/j.biortech.2017.01.061 URL |
[13] |
Zhou H, Xu H, Wang X, et al. Convergent production of 2, 5-furandicarboxylic acid from biomass and CO2[J]. Green Chemistry, 2019,21:2923-2927.
doi: 10.1039/C9GC00869A URL |
[14] |
Zubrowska SM, Walczak J. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms[J]. Water Research, 2014,61(15):200-209.
doi: 10.1016/j.watres.2014.05.029 URL |
[15] |
Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009,3(1):25-31.
doi: 10.1166/jbmb.2009.1002 URL |
[16] |
Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology, 2003,83(1):1-11.
doi: 10.1016/s0960-8524(01)00212-7 URL pmid: 12058826 |
[17] |
Ostovareh S, Karimi K, Zamani A. Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment[J]. Industrial Crops and Products, 2015,66:170-177.
doi: 10.1016/j.indcrop.2014.12.023 URL |
[18] |
Lee JY, Li P, Lee J, et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation[J]. Bioresource Technology, 2013,127(9):119-125.
doi: 10.1016/j.biortech.2012.09.122 URL |
[19] |
Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems[J]. Biotechnol Bioeng, 2004,88(7):797-824.
doi: 10.1002/bit.20282 URL pmid: 15538721 |
[20] |
Qing Q, Yang B, Wyman CE. Impact of surfactants on pretreatment of corn stover[J]. Bioresource Technology, 2010,101(15):5941-5951.
doi: 10.1016/j.biortech.2010.03.003 pmid: 20304637 |
[21] | Satyanagalakshmi K, Sindhu R, et al. Bioethanol production from acid pretreated water-hyacinth by separate hydrolysis and fermentation[J]. Journal of Scientific and Industrial Research, 2011,70(2):156-161. |
[22] | Zhang B, Shahbazi A, Wang L, et al. The pretreatment, enzymatic hydrolysis, and fermentation of cattails from constructed wetlands[J]. Energy Sources, 2013,35(3):246-252. |
[23] |
Jeong TS, Um BH, Kim JS, et al. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose[J]. Applied Biochemistry & Biotechnology, 2010,161(1-8):22-33.
doi: 10.1007/s12010-009-8898-z URL pmid: 20087686 |
[24] |
Kim TH. Sequential hydrolysis of hemicellulose and lignin in lignocellulosic biomass by two-stage percolation process using dilute sulfuric acid and ammonium hydroxide[J]. Korean Journal of Chemical Engineering, 2011,28(11):2156-2162.
doi: 10.1007/s11814-011-0093-6 URL |
[25] |
Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review[J]. Int J Mol Sci, 2008,9(9):1621-1651.
URL pmid: 19325822 |
[26] |
Yang L, Cao J, Jin Y, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw[J]. Bioresource Technology, 2012,124(16):283-291.
doi: 10.1016/j.biortech.2012.08.041 URL |
[27] |
Chen BY, Chen SW, Wang HT. Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion[J]. Biomass and Bioenergy, 2012,39(1):182-191.
doi: 10.1016/j.biombioe.2012.01.012 URL |
[28] | 燕亚平. 微波与碱组合预处理沙柳过程中细胞壁解构及糖化研究[D]. 呼和浩特:内蒙古工业大学, 2018. |
Yan YP. Study on cell wall deconstruction and saccharification during pretreatment of salix[D]. Hohhot:Mongolia Industrial University, 2018. | |
[29] | 李双凤, 王淮, 陈家丽, 等. SO3微热爆/酶催化H2O2氧化联合稀碱预处理稻草秸秆的工艺研究[J]. 广东化工, 2019,14(46):3-5. |
Li SF, Wang H, Chen JL, et al. Study on SO3 micro-thermal explosion/enzyme catalyzed H2O2 oxidation combined with dilute alkali pretreatment of rice straw[J]. Guangdong Chemical Industry, 2019,14(46):3-5. | |
[30] |
Li Q, Gao Y, Wang H, et al. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification[J]. Bioresource Technology, 2012,125(16):193-199.
doi: 10.1016/j.biortech.2012.08.095 URL |
[31] | 苗林平, 霍丽, 等. 碱性过氧化氢预处理小麦秸秆强化酶解产糖的研究[J]. 纤维素科学与技术, 2018,26(4):49-55. |
Miao LP, Huo L, et al. Effects of mild alkaline hydrogen peroxide(AHP)pretreatment on enzymatic saccharification of wheat straw[J]. Cellulose Science and Technology, 2018,26(4):49-55. | |
[32] |
Hu H, Zhang Y, Liu X, et al. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation[J]. Polymer Bulletin, 2014,71(2):453-464.
doi: 10.1007/s00289-013-1070-5 URL |
[33] |
Zhang Y, Li Q, Su J, et al. A green and efficient technology for the degradation of cellulosic materials:Structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt[J]. Bioresource Technology, 2015,177(22):176-181.
doi: 10.1016/j.biortech.2014.11.085 URL |
[34] |
Zheng J, Rehmann L. Extrusion pretreatment of lignocellulosic biomass:a review[J]. International Journal of Molecular Sciences, 2014,15(10):18967-18984.
doi: 10.3390/ijms151018967 URL pmid: 25334065 |
[35] | Dale BE, Weaver J, Byers FM. Extrusion processing for ammonia fiber explosion(AFEX)[J]. Applied Biochemistry & Biotechnology, 1999,77(3):35-45. |
[36] |
Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009,82(5):815-827.
doi: 10.1007/s00253-009-1883-1 URL |
[37] |
Shuai L, Questell-Santiago YM, Luterbacher JS. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production[J]. Green Chemistry, 2016,18(4):937-943.
doi: 10.1039/C5GC02489G URL |
[38] |
Li S, Zhao C, Yue F, et al. Revealing structural modifications of lignin in acidic γ-Valerolactone-H2O pretreatment[J]. Polymers, 2020,12(1):116-125.
doi: 10.3390/polym12010116 URL |
[39] |
Mellmer MA, Martin Alonso D, et al. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides[J]. Green Chemistry, 2014,16(11):4659-4662.
doi: 10.1039/c4gc01768d URL |
[40] |
Sun SN, Chen X, et al. Pretreatment of Eucalyptus urophylla in γ-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis[J]. Industrial Crops and Products, 2019,132(8):21-28.
doi: 10.1016/j.indcrop.2019.02.004 URL |
[41] |
Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents(DESs)and their applications[J]. Chemical Reviews, 2014,114(21):11060-11082.
doi: 10.1021/cr300162p pmid: 25300631 |
[42] | Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chemical Communications, 2008,14(10):1235-1237. |
[43] |
Chen Z, Jacoby WA, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology, 2019,279:281-286.
doi: S0960-8524(19)30159-2 pmid: 30738354 |
[44] | 王冬梅, 刘云. 低共熔溶剂(DES)分级分离木质纤维素组分新技术[J]. 北京化工大学学报, 2018,45(6):40-47. |
Wang DM, Liu Y. Fractionation of lignocellulose with deep eutectic solvent(DES)[J]. Journal of Beijing University of Chemical Technology, 2018,45(6):40-47. | |
[45] |
Yan YT, et al. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin[J]. Bioresource Technology, 2019,281:359-366.
doi: 10.1016/j.biortech.2019.02.010 URL pmid: 30831515 |
[46] |
Hou, Xue Dan Li, , et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018,249:261-267.
doi: 10.1016/j.biortech.2017.10.019 URL pmid: 29049985 |
[47] |
Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment:Recent developments, challenges and novel opportunities[J]. Biotechnology Advances, 2018,36(8):2032-2050.
doi: S0734-9750(18)30147-2 pmid: 30193965 |
[48] |
Xu GC, Ding JC, Han RZ, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016,203:364-369.
URL pmid: 26597485 |
[49] |
Li T, Lyu G, Liu Y, et al. Deep eutectic solvents(DESs)for the isolation of willow lignin[J]. International Journal of Molecular Sciences, 2017,18(11):2266.
doi: 10.3390/ijms18112266 URL |
[50] |
Kumar AK, Parikh BS, Shah E, et al. Cellulosic ethanol production from green solvent-pretreated rice straw[J]. Biocatalysis and Agricultural Biotechnology, 2016,7:14-23.
doi: 10.1016/j.bcab.2016.04.008 URL |
[51] |
Wahlstrom R, Hiltunen J, et al. Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose:effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis[J]. RSC Advances, 2016,6(72):68100-68110.
doi: 10.1039/C6RA11719H URL |
[52] |
Nai C, Meyer V. From axenic to mixed cultures:technological advances accelerating a paradigm shift in microbiology[J]. Trends in Microbiology, 2017,26(6):2-5.
doi: 10.1016/j.tim.2017.11.006 URL |
[53] |
Shahab RL, Brethauer S, et al. Engineering of ecological niches to create stable artificial consortia for complex biotransformations[J]. Curr Opin Biotechnol, 2020,62:129-136.
doi: 10.1016/j.copbio.2019.09.008 URL pmid: 31671322 |
[54] |
Gao M, Ploessl D, Shao Z. Enhancing the co-utilization of biomass-derived mixed sugars by yeasts[J]. Frontiers in Microbiology, 2019,9:3264.
doi: 10.3389/fmicb.2018.03264 URL pmid: 30723464 |
[55] |
Chappell TC, Nair NU. Co-utilization of hexoses by a microconsortium of sugar-specific E. Coli strains[J]. Biotechnology and Bioengineering, 2017,114(10):2309-2318.
doi: 10.1002/bit.26351 pmid: 28600864 |
[56] |
Verhoeven MD, De VSC, Daran JG, et al. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains[J]. FEMS Yeast Research, 2018, 18(8):DOI: 10.1093/femsyr/foy075.
doi: 10.1093/femsyr/foy086 URL pmid: 30085062 |
[57] |
Liang WS, York W, Lonnie O. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and saccharomyces cerevisiae[J]. Bioresource Technology, 2019,273(1):269-276.
doi: 10.1016/j.biortech.2018.11.016 URL |
[58] |
Wen Z, Minton NP, Zhang Y, et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium[J]. Metabolic Engineering, 2016,39(12):38-48.
doi: 10.1016/j.ymben.2016.10.013 URL |
[59] |
Chi X, Li J, Wang X, et al. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess[J]. Bioresource Technology, 2018,254(2):115-120.
doi: 10.1016/j.biortech.2018.01.042 URL |
[60] |
Kiyoshi K, Furukawa M, Seyama T, et al. Butanol production from alkali-pretreated rice straw by co-culture of clostridium thermocellum and clostridium saccharoperbutylacetonicum[J]. Bioresource Technology, 2015,186:325-328.
doi: S0960-8524(15)00393-4 pmid: 25818258 |
[61] |
Minty JJ, Singer ME, Scholz SA, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proceedings of the National Academy of Sciences, 2013,110(36):14592-14597.
doi: 10.1073/pnas.1218447110 URL |
[62] |
Rinaldi R, Jastrzebski R, Clough MT, et al. Paving the way for lignin valorisation:recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016,55(29):8164-8215.
doi: 10.1002/anie.201510351 URL pmid: 27311348 |
[63] | Sturgeon MR, Kim S, Lawrence K, et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-Ether linkages:implications for lignin depolymerization in acidic environments[J]. ACS Sustainable Chemistry & Engineering, 2013,2(3):472-485. |
[64] |
Lee CR, Yoon JS, Suh YW, et al. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catalysis Communications, 2012,17:54-58.
doi: 10.1016/j.catcom.2011.10.011 URL |
[65] |
Shuai L, Amiri MT, Questell SYM, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016,354(6):329-333.
doi: 10.1126/science.aaf7810 URL |
[66] |
Wu Lan, Jean BB, Luterbacher JS, et al. Highly selective oxidation and depolymerization of α, γ-diol protected lignin[J]. Angewandte Chemie, 2019,58(9):2649-2654.
doi: 10.1002/anie.201811630 URL pmid: 30600891 |
[67] | 朱盛伟, 展旺, 于鸿飞, 等. 甲酸法绿色分离缅甸黄花梨中木质素和纤维素的研究[J]. 北京化工大学学报, 2019,46(2):57-63. |
Zhu SW, Zhan W, Yu HF, et al. Fractionation of lignin and cellulose from Pterocarpus macarocarpus Kurz using formic acid[J]. Journal of Beijing University of Chemical Technology, 2019,46(2):57-63. | |
[68] | 武小芬, 齐慧, 陈亮, 等. 甲酸分离辐照稻草中纤维素、木质素和木糖的工艺[J]. 辐射研究与辐射工艺学报, 2020,44(3):18-24. |
Wu XF, Qi H, Chen L, et al. Fractionation processing of cellulose, lignin, and xylose from irradiated rice straw using formic acid[J]. Journal of Radiation Research and Radiation Processing, 2020,44(3):18-24. | |
[69] |
Rahimi A, Azarpira A, Kim H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American Chemical Society, 2013,135(17):6415-6418.
doi: 10.1021/ja401793n URL pmid: 23570328 |
[70] | 闫磊. 木质素的化学改性与高效利用研究进展[J]. 绿色科技, 2016,82(12):196-200. |
Yan L. Advances of chemical modification and efficient application of lignin[J]. Green Technology, 2016,82(12):196-200. | |
[71] | 杨军艳, 毕宇霆, 吴建新, 等. 木质素化学改性研究进展[J]. 上海应用技术学院学报, 2015(15):29-39. |
Yang JY, Bi YT, Wu JX, et al. Research advances in chemical modification of lignin[J]. Journal of Shanghai Institute of Technology, 2015(15):29-39. | |
[72] |
Zhou H, Xu H, Liu Y. Aerobic oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic acid over Co/Mn-Lignin coordination complexes-derived catalysts[J]. Applied Catalysis B:Environmental, 2019,244:965-973.
doi: 10.1016/j.apcatb.2018.12.046 URL |
[73] |
Zhou H, Hong S, Zhang H, et al. Toward biomass-based single-atom catalysts and plastics:Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B:Environmental, 2019,256:117767-117775.
doi: 10.1016/j.apcatb.2019.117767 URL |
[74] | 金涛. 我国纤维素乙醇技术发展中的问题及对策[J]. 河南科技, 2018,639(5):46-50. |
Jin T. Problems and countermeasures of the development of cellulosic ethanol technology in China[J]. Henan Science and Technology, 2018,639(5):46-50. | |
[75] | 赵晓勤, 毛开云, 陈大明. 基于专利分析的燃料乙醇技术发展研究[J]. 生物产业技术, 2018,66(4):12-19. |
Zhao XQ, Mao KY, Chen DM. Development of fuel ethanol technology based on patent analysis[J]. Biological Industry Technology, 2018,66(4):12-19. |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[3] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[4] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[5] | 胡芳, 董旭, 史长伟, 吴学栋. 超声波强化木质纤维素酶解的研究进展[J]. 生物技术通报, 2021, 37(10): 234-244. |
[6] | 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. |
[7] | 刘登, 刘均洪. 嗜热性木质纤维素酶在纤维素乙醇生产中的研究进展[J]. 生物技术通报, 2020, 36(8): 185-193. |
[8] | 梁昕鑫, 唐丹, 霍毅欣. 蛋白源生物质的绿色生物转化[J]. 生物技术通报, 2020, 36(12): 216-228. |
[9] | 张家顺, 高丽莉, 马江山, 刘高强. 表面活性剂对纤维素酶解的影响及机理[J]. 生物技术通报, 2019, 35(9): 11-20. |
[10] | 高越, 郭晓鹏, 杨阳, 张苗苗, 李文建, 陆栋. 生物丁醇发酵研究进展[J]. 生物技术通报, 2018, 34(8): 27-34. |
[11] | 林贝, 李健秀, 刘雪凌. 木质纤维素水解副产物对乙醇发酵的影响及应对措施[J]. 生物技术通报, 2018, 34(3): 23-30. |
[12] | 白龙,李春美,吕途,杜颖,杨玥,田沈. 生物转化能源草制取纤维素乙醇的研究进展[J]. 生物技术通报, 2017, 33(5): 50-56. |
[13] | 储引娣, 苏小运. 嗜热厌氧细菌Caldicellulosiruptor bescii降解木质纤维素研究进展[J]. 生物技术通报, 2017, 33(10): 33-39. |
[14] | 王海燕,朱之轩,金晶,丁毅. 莲藕根尖染色体制片与免疫荧光染色技术的优化[J]. 生物技术通报, 2016, 32(4): 74-79. |
[15] | 张森翔, 尹小燕, 龚志伟, 杨忠华, 侯亚利, 周卫. 纤维素酶降解秸秆特性及其基因工程研究进展[J]. 生物技术通报, 2015, 31(5): 20-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||