生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 194-203.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0804
杨利1,2(), 王波3, 李文姣1,2, 王兴军1,2, 赵术珍1,2()
收稿日期:
2020-07-01
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
杨利,女,硕士研究生,研究方向:植物生理学;E-mail:基金资助:
YANG Li1,2(), WANG Bo3, LI Wen-jiao1,2, WANG Xing-jun1,2, ZHAO Shu-zhen1,2()
Received:
2020-07-01
Published:
2021-04-26
Online:
2021-05-13
摘要:
干旱胁迫是主要的非生物胁迫之一,严重阻碍了作物的生产。干旱胁迫导致ROS水平升高,过量的ROS会引起氧化胁迫,严重破坏脂质,核酸和蛋白质,导致严重的细胞伤害,甚至死亡。因此,维持ROS的生理水平对于需氧生物至关重要,它依赖于酶促抗氧化剂和非酶抗氧化剂等途径的协调作用。综述了干旱胁迫下ROS的产生、清除及信号转导的研究进展,旨为植物对干旱胁迫响应的研究提供参考。
杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展[J]. 生物技术通报, 2021, 37(4): 194-203.
YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress[J]. Biotechnology Bulletin, 2021, 37(4): 194-203.
[1] |
Raza A, Razzaq A, Mehmood SS, et al. Impact of climate change on crops adaptation and strategies to tackle its outcome:A review[J]. Plants, 2019,8(2):34.
doi: 10.3390/plants8020034 URL |
[2] |
Hasanuzzaman M, Bhuyan M, Anee TI, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress[J]. Antioxidants, 2019,8(9):384.
doi: 10.3390/antiox8090384 URL |
[3] | Maurya AK. Oxidative stress in crop plants[M]// Hasanuzzaman M. Agronomic Crops. Singapore:Springer, 2020. |
[4] |
Kohli SK, Khanna K, Bhardwaj R, et al. Assessment of subcellular ROS and NO metabolism in higher plants:Multifunctional signaling molecules[J]. Antioxidants, 2019,8(12):641.
doi: 10.3390/antiox8120641 URL |
[5] | Hasanuzzaman M, Nahar K, Gill SS, et al. Drought stress responses in plants, oxidative stress, and antioxidant defense[M]. Climate Change and Plant Abiotic Stress Tolerance. Weinheim:Wiley, 2014. |
[6] |
Corpas FJ, González-Gordo S, Palma JM. Plant peroxisomes:A factory of reactive species[J]. Front Plant Sci, 2020,11:853.
doi: 10.3389/fpls.2020.00853 URL |
[7] |
Singh A, Kumar A, Yadav S, et al. Reactive oxygen species-mediated signaling during abiotic stress[J]. Plant Gene, 2019,18:100173.
doi: 10.1016/j.plgene.2019.100173 URL |
[8] |
Lima ALS, DaMatta FM, Pinheiro HA, et al. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions[J]. Environ Exp Bot, 2002,47(3):239-247.
doi: 10.1016/S0098-8472(01)00130-7 URL |
[9] |
Contour-Ansel D, Torres-Franklin ML, Cruz DE Carvalho MH, et al. Glutathione reductase in leaves of cowpea:cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment[J]. Ann Bot, 2006,98(6):1279-1287.
doi: 10.1093/aob/mcl217 URL |
[10] |
Akram NA, Iqbal M, Muhammad A, et al. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola(Brassica napus L.)under drought stress[J]. Protoplasma, 2018,255(1):163-174.
doi: 10.1007/s00709-017-1140-x URL |
[11] |
Guo Y, Tian S, Liu S, et al. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress[J]. Photosynthetica, 2018,56(3):861-872.
doi: 10.1007/s11099-017-0741-0 URL |
[12] |
Kiranmai K, Lokanadha G, Pandurangaiah M, et al. A novel WRKY transcription factor, MuWRKY3(Macrotyloma uniflorum Lam. Verdc. )enhances drought stress tolerance in transgenic groundnut(Arachis hypogaea L.)plants[J]. Front Plant Sci, 2018,9:346.
doi: 10.3389/fpls.2018.00346 pmid: 29616059 |
[13] |
Wang FZ, Wang QB, Kwon SY, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase[J]. J Plant Physiol, 2005,162(4):465-472.
doi: 10.1016/j.jplph.2004.09.009 URL |
[14] |
Turkan I, Bor M, Ozdemir F, et al. Differential responses of lipid peroxidation and anti-oxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgarisL. subjected to polyethylene glycol mediated water stress[J]. Plant Sci, 2005,168(1):223-231.
doi: 10.1016/j.plantsci.2004.07.032 URL |
[15] |
Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves[J]. J Exp Bot, 2002,53(379):2401-2410.
doi: 10.1093/jxb/erf090 URL |
[16] |
D’Arcy R, Contour-Ansel D, Pham-Thi AT, et al. Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves[J]. Ann Bot, 2006,97(1):133-140.
doi: 10.1093/aob/mcj010 URL |
[17] |
Tang L, Kwon SY, Kim SH, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature[J]. Plant Cell Rep, 2006,25(12):1380-1386.
pmid: 16841217 |
[18] |
Anderson JV, Davis DG. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula[J]. Physiol Planta, 2004,120(3):421-433.
doi: 10.1111/ppl.2004.120.issue-3 URL |
[19] |
Aror M, Saxena P, Abdin M, et al. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants[J]. Symbiosis, 2020,80(6):61-73.
doi: 10.1007/s13199-019-00656-w URL |
[20] |
Chowdhury SR, Choudhuri MA. Hydrogen peroxide metabolism as an index of water stress tolerance in jute[J]. Physiol Plantarum, 1985,65(4):476-480.
doi: 10.1111/ppl.1985.65.issue-4 URL |
[21] |
Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J]. Environ Exp Bot, 2001,45(2):105-114.
pmid: 11275219 |
[22] |
Rizhsky L, Hallak-Herr E, Breusegem FV, et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J]. Plant J, 2002,32(3):329-342.
doi: 10.1046/j.1365-313X.2002.01427.x URL |
[23] | Hasanuzzaman M, Nahar K, Gill SS, et al. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L. :An intrinsic study on antioxidant defense and glyoxalase systems[J]. Front Plant Sci, 2017,8(682):115. |
[24] |
Munné-Bosch S. The role of alpha-tocopherol in plant stress tolerance[J]. J Plant Physiol, 2005,162(7):743-748.
doi: 10.1016/j.jplph.2005.04.022 URL |
[25] |
Sreeharsha RV, Mudalkar S, Sengupta D, et al. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea(Cajanus cajan L.)[J]. Photosynth Res, 2019,139(1-3):425-439.
doi: 10.1007/s11120-018-0586-9 pmid: WOS:000458553100032 |
[26] | Hussain HA, Men S, Hussain S, et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids[J]. Sci Rep, 2019,9(1):1-12. |
[27] |
Sharma S, Villamor JG, Verslues PE. Essential role of tissue-specific proline synjournal and catabolism in growth and redox balance at low water potential[J]. Plant Physiol, 2011,157(1):292-304.
doi: 10.1104/pp.111.183210 URL |
[28] |
Slama I, Abdelly C, Bouchereau A, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress[J]. Ann Bot, 2015,115(3):433-447.
doi: 10.1093/aob/mcu239 URL |
[29] |
Annunziata MG, Ciarmiello LF, Woodrow P, et al. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses[J]. Front Plant Sci, 2019,10:230.
doi: 10.3389/fpls.2019.00230 pmid: 30899269 |
[30] |
Pallavi S, Bhushan JA, Shanker DR, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012. DOI: 10.1155/2012/217037.
doi: 10.1155/2012/217037 |
[31] |
Molinari HBC, Marur CJ, Daros E, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane(Saccha-rum spp. ):osmotic adjustment, chlorophyll fluorescence and oxidative stress[J]. Physiologia Plantarum, 2010,130(2):218-229.
doi: 10.1111/ppl.2007.130.issue-2 URL |
[32] |
Hasanuzzaman M, Alam MM, Rahman A, et al. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice(Oryza sativa L.)varieties[J]. Biomed Research International, 2014. DOI: 10.1155/2014/757219.
doi: 10.1155/2014/757219 |
[33] |
Terzi R, Kalaycıoglu E, Demiralay M, et al. Exogenous ascorbic acid mitigates accumulation of abscisic acid, proline and polyamine under osmotic stress in maize leaves[J]. Acta Physiologiae Plantarum, 2015,37(3):43.
doi: 10.1007/s11738-015-1792-0 URL |
[34] |
Nahar K, Hasanuzzaman M, Alam MM, et al. Glutathione-induced drought stress tolerance in mung bean:coordinated roles of the antioxidant defence and methylglyoxal detoxification systems[J]. AOB Plants, 2015, 7:plv069.
doi: 10.1093/aobpla/plv069 URL |
[35] |
Yan M, Rayapuram N, Subramani S. The control of peroxisome number and size during division and proliferation[J]. Curr Opin Cell Biol, 2005,17(4):376-383.
doi: 10.1016/j.ceb.2005.06.003 URL |
[36] |
Donato P, Daniela T, Nicoletta LM, et al. Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role[J]. Plant Cell Physiol, 2001,42(12):1373-1382.
doi: 10.1093/pcp/pce174 URL |
[37] | Catalá A, Díaz M. Editorial:Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes[J]. Front Physiol, 2016,7(423):423-425. |
[38] | Dar MI, Naikoo MI, Khan FA, et al. An introduction to reactive oxygen species metabolism under changing climate in plants[M] Khan M, Khan N. Reactive oxygen species and antioxidant systems in plants:role and regulation under abiotic stress, 2017: 25-52. |
[39] |
Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000,406(6797):731-734.
pmid: 10963598 |
[40] |
Mori IC, Schroeder JI. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiol, 2004,135(2):702-708.
doi: 10.1104/pp.104.042069 URL |
[41] | Hossain MA, Bhattacharjee S, Armin SM, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:Insights from ROS detoxification and scavenging[J]. Front Plant Sci, 2015,6:420. |
[42] |
Maxwell DP, Nickels R, McIntosh L. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence[J]. Plant J, 2002,29(3):269-279.
pmid: 11844105 |
[43] |
Desikan R, A-H-Mackerness S, Hancock JT, et al. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiol, 2001,127(1):159-172.
pmid: 11553744 |
[44] |
Thomas S, Kotamraju S, Zielonka J, et al. Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells:a bell-shaped signaling response[J]. Free Radic Biol Med, 2007,42(7):1049-1061.
doi: 10.1016/j.freeradbiomed.2007.01.005 URL |
[45] |
Kar RK. Plant responses to water stress:Role of reactive oxygen species[J]. Plant Signal Behav, 2011,6(11):1741-1745.
doi: 10.4161/psb.6.11.17729 URL |
[46] |
Volkov RA, Panchuk II, Mullineaux PM, et al. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis[J]. Plant Mol Biol, 2006,61(4-5):733-746.
pmid: 16897488 |
[47] |
Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002,53(1):247-273.
doi: 10.1146/annurev.arplant.53.091401.143329 URL |
[48] | Postiglione AE, Muday GK. The role of ROS homeostasis in ABA-induced guard cell signaling[J]. Front Plant Sci, 2020(11):968. |
[49] |
Miao Y, Lv D, Wang P, et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J]. Plant Cell, 2006,18(10):2749-2766.
doi: 10.1105/tpc.106.044230 URL |
[50] |
Desikan R, Cheung MK, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. J Exp Bot, 2004,55(395):205-212.
doi: 10.1093/jxb/erh033 URL |
[51] | Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synjournal in root tips of wheat seedlings[J]. Aust J Plant Physiol, 2001,28(10):1055-1061. |
[52] |
Couée I, Sulmon C, Gouesbet G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. J Exp Bot, 2006,57(3):449-459.
pmid: 16397003 |
[53] |
Li Y, Lee KK, Walsh S, et al. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine[J]. Genome Res, 2006,16(3):414-427.
doi: 10.1101/gr.4237406 URL |
[54] |
Osuna D, Usadel B, Morcuende R, et al. Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings[J]. Plant J, 2007,49(3):463-491.
doi: 10.1111/tpj.2007.49.issue-3 URL |
[55] |
Wei Y, Wang X, Shao X, et al. Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts[J]. Food Sci Nutr, 2019,7(12):4037-4044.
doi: 10.1002/fsn3.v7.12 URL |
[56] |
Zhou A, Ma H, Feng S, et al. A novel sugar transporter from Dianthus spiculifolius, DsSWEET12, affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis[J]. Int J Mol Sci, 2018,19(2):497.
doi: 10.3390/ijms19020497 URL |
[57] |
Sun L, Shukair S, Naik TJ, et al. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II[J]. Mol Cell Biol, 2008,28(3):1007-1017.
doi: 10.1128/MCB.00224-07 URL |
[58] |
Camacho-Pereira J, Meyer LE, Machado LB, et al. Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity[J]. Plant Physiol, 2008,149(2):1099-1110.
doi: 10.1104/pp.108.129247 URL |
[59] |
Linster CL, Adler LN, Webb K, et al. A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C:covalent intermediate and substrate requirements for the conserved reaction[J]. J Biol Chem, 2008,283(27):18483-18492.
doi: 10.1074/jbc.M802594200 pmid: 18463094 |
[60] |
Noctor FG. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005,17(7):1866-1875.
doi: 10.1105/tpc.105.033589 URL |
[61] |
Sulmon C, Gouesbet G, Amrani AE, et al. Sugar-induced tolerance to the herbicide atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses[J]. Plant Cell Rep, 2006,25(5):489-498.
doi: 10.1007/s00299-005-0062-9 URL |
[62] |
Verslues PE, Bray EA. Role of abscisic acid(ABA)and Arabi-dopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation[J]. J Exp Bot, 2006,57(1):201-212.
pmid: 16339784 |
[63] |
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress:Revisiting the crucial role of a universal defense regulator[J]. Antioxidants, 2020,9(8):681.
doi: 10.3390/antiox9080681 URL |
[64] |
Bobrovskikh A, Zubairova U, Kolodkin A, et al. Subcellular compartmentalization of the plant antioxidant system:an integrated overview[J]. PeerJ, 2020,8:9451.
doi: 10.7717/peerj.9451 pmid: 32742779 |
[65] |
Bolouri-Moghaddam MR, Le Roy K, Xiang L, et al. Sugar signalling and antioxidant network connections in plant cells[J]. FEBS J, 2010,277(9):2022-2037.
doi: 10.1111/j.1742-4658.2010.07633.x URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[4] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[5] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[6] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[7] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[8] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[9] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[10] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[11] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[12] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[13] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[14] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[15] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||