生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 86-94.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0831
• 青贮微生物专题(专题主编:杨富裕 教授) • 上一篇 下一篇
毛婷1(), 牛永艳1, 郑群1, 杨涛1, 穆永松2, 祝英1, 季彬1, 王治业1()
收稿日期:
2021-06-30
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
毛婷,女,硕士,助理研究员,研究方向:微生物资源利用;E-mail: 基金资助:
MAO Ting1(), NIU Yong-yan1, ZHENG Qun1, YANG Tao1, MU Yong-song2, ZHU Ying1, JI Bin1, WANG Zhi-ye1()
Received:
2021-06-30
Published:
2021-09-26
Online:
2021-10-25
摘要:
为了开发适合苜蓿青贮的菌剂产品,研究青贮微生物群落与苜蓿青贮品质的关系。从苜蓿绿汁发酵液中分离筛选产酸能力强的乳酸菌,采用16S rDNA基因序列同源性分析鉴定并复合制备青贮细菌GSSW。青贮样品分为4组,添加苜蓿绿汁发酵液(aFGJ组),添加宜生贮宝菌剂(YB组),添加GSSW菌剂(GSSW组)及未添加菌剂作为对照(CK组),采用高通量测序技术分析不同处理组青贮样品微生物群落多样性并检测理化发酵指标。结果表明:从苜蓿绿汁发酵液中分离得到高产酸乳酸菌株MXLZ-1、MXLZ-2、MXLZ-4经鉴定为Pediococcus parvulus、Lactobacillus plantarum、Pediococcus pentosaceus。与CK组相比,添加青贮菌剂的3组干物质和粗蛋白显著增加(P<0.05);中性洗涤纤维、酸性洗涤纤维和木质素含量显著降低(P<0.05);pH及氨氮/总氮显著降低(P<0.05),乳酸含量显著升高(P<0.05)。4组青贮样品相对丰度较高的属均为Lactobacillis及Pediococcus;而添加菌剂的3组中Lactobacillis丰度高于Pediococcus,CK组相反;4组青贮样品L. plantarum,P. pentosaceus,L. brevis及Enterococcus mundti差异显著,添加3种菌剂均可提高L. plantarum丰度,降低P. pentosaceus及E. mundtii丰度。添加青贮菌剂均能增加有益菌的数量,减少有害菌数量,改善苜蓿青贮发酵品质;L. plantarum和P. pentosaceus的含量及比值对青贮优良发酵品质和组分变化起着重要作用;GSSW菌剂可运用于苜蓿青贮。
毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94.
MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage[J]. Biotechnology Bulletin, 2021, 37(9): 86-94.
项目 Index | 数值 Numeric value |
---|---|
干物质 Dry matter/(g·kg-1 FM) | 382±0.42 |
pH | 6.43±0.25 |
酸性洗涤纤维Acid detergent fiber/(g·kg-1 DM) | 345±1.20 |
中性洗涤纤维Neutral detergent fiber/(g·kg-1 DM) | 452±0.35 |
粗蛋白Crude protein/(g·kg-1 DM) | 206±0.32 |
可溶性碳水化合物 Water soluble carbohydrate/(g·kg-1 DM) | 68.3±0.25 |
表1 紫花苜蓿鲜草的化学组成
Table 1 Chemical composition of fresh alfalfa
项目 Index | 数值 Numeric value |
---|---|
干物质 Dry matter/(g·kg-1 FM) | 382±0.42 |
pH | 6.43±0.25 |
酸性洗涤纤维Acid detergent fiber/(g·kg-1 DM) | 345±1.20 |
中性洗涤纤维Neutral detergent fiber/(g·kg-1 DM) | 452±0.35 |
粗蛋白Crude protein/(g·kg-1 DM) | 206±0.32 |
可溶性碳水化合物 Water soluble carbohydrate/(g·kg-1 DM) | 68.3±0.25 |
时间 Time/d | 添加剂 Silage additive | 干物质 DM/(g·kg-1 FM) | 营养成分/(g·kg-1 DM) | ||||
---|---|---|---|---|---|---|---|
粗蛋白 CP | 可溶性碳水化和物 WSC | 中性洗涤纤维NDF | 酸性洗涤纤维ADF | 木质素 Lignin | |||
30 | YB | 324±0.40e | 253±0.31e | 61.5±0.03cd | 333±0.26c | 286±0.30b | 86±0.52ab |
aFGJ | 323±0.26e | 225±0.25c | 59.7±0.02ab | 359±0.79e | 304±0.15f | 82±0.10ab | |
GSSW | 305±0.58ab | 274±0.06h | 62.8±0.00d | 356±0.30e | 291±0.35cd | 87±0.06b | |
CK | 304±0.21ab | 216.±0.29b | 60.4±0.05bc | 404±0.44h | 300±0.21e | 86±0.13ab | |
50 | YB | 315±0.12d | 246±0.23f | 58.9±0.06ab | 325±0.17b | 263±0.41a | 83±0.05ab |
aFGJ | 311±0.21cd | 215±0.10ab | 58.6±0.03a | 330±0.06bc | 294±0.12d | 82±0.11a | |
GSSW | 304±0.25ab | 269±0.25j | 60.7±0.02bc | 343±0.15d | 287±0.16bc | 86±0.15ab | |
CK | 299±0.12a | 213±0.29ab | 60.1±0.03bcd | 397±0.25j | 292±0.25cd | 87±0.13ab | |
70 | YB | 317±0.20d | 237±0.25d | 62.5±0.01d | 323±0.32b | 260±0.27a | 83±0.14ab |
aFGJ | 315±0.35d | 210±0.12a | 60.6±0.03bc | 333±0.15c | 294±0.31d | 82±0.22a | |
GSSW | 303±0.29ab | 245±0.25f | 67.8±0.21f | 314±0.21a | 284±0.09b | 83±0.16ab | |
CK | 296±0.21a | 208±0.21a | 59.9±0.02bcd | 387±0.31f | 285±0.03b | 86±0.11ab |
表2 青贮时间和青贮添加剂对苜蓿营养品质的影响
Table 2 Effect of time and silage additive on the nutritional quality of alfalfa silage
时间 Time/d | 添加剂 Silage additive | 干物质 DM/(g·kg-1 FM) | 营养成分/(g·kg-1 DM) | ||||
---|---|---|---|---|---|---|---|
粗蛋白 CP | 可溶性碳水化和物 WSC | 中性洗涤纤维NDF | 酸性洗涤纤维ADF | 木质素 Lignin | |||
30 | YB | 324±0.40e | 253±0.31e | 61.5±0.03cd | 333±0.26c | 286±0.30b | 86±0.52ab |
aFGJ | 323±0.26e | 225±0.25c | 59.7±0.02ab | 359±0.79e | 304±0.15f | 82±0.10ab | |
GSSW | 305±0.58ab | 274±0.06h | 62.8±0.00d | 356±0.30e | 291±0.35cd | 87±0.06b | |
CK | 304±0.21ab | 216.±0.29b | 60.4±0.05bc | 404±0.44h | 300±0.21e | 86±0.13ab | |
50 | YB | 315±0.12d | 246±0.23f | 58.9±0.06ab | 325±0.17b | 263±0.41a | 83±0.05ab |
aFGJ | 311±0.21cd | 215±0.10ab | 58.6±0.03a | 330±0.06bc | 294±0.12d | 82±0.11a | |
GSSW | 304±0.25ab | 269±0.25j | 60.7±0.02bc | 343±0.15d | 287±0.16bc | 86±0.15ab | |
CK | 299±0.12a | 213±0.29ab | 60.1±0.03bcd | 397±0.25j | 292±0.25cd | 87±0.13ab | |
70 | YB | 317±0.20d | 237±0.25d | 62.5±0.01d | 323±0.32b | 260±0.27a | 83±0.14ab |
aFGJ | 315±0.35d | 210±0.12a | 60.6±0.03bc | 333±0.15c | 294±0.31d | 82±0.22a | |
GSSW | 303±0.29ab | 245±0.25f | 67.8±0.21f | 314±0.21a | 284±0.09b | 83±0.16ab | |
CK | 296±0.21a | 208±0.21a | 59.9±0.02bcd | 387±0.31f | 285±0.03b | 86±0.11ab |
时间Time /d | 添加剂 Silage additive | pH | 氨氮/总氮 Ammonia nitrogen/Total nitrogen | 挥发性脂肪酸 Volatile fatty acid/(g·kg-1DM) | ||
---|---|---|---|---|---|---|
乳酸 Lactic acid | 乙酸 Acetic acid | 丁酸 Butyric acid | ||||
30 | YB | 5.02±0.02ef | 60.5±0.03a | 42.3±0.01e | 12.4±0.04c | |
aFGJ | 5.13±0.01fg | 63.1±0.03c | 32.9±0.06a | 11.1±0.01b | 0.1±0.01a | |
GSSW | 5.08±0.07e | 59.7±0.05a | 43.2±0.04f | 11.2±0.02b | -- | |
CK | 5.57±0.07i | 69.5±0.07f | 33.4±0.05a | 10.5±0.04a | 0.9±0.12d | |
50 | YB | 4.56±0.02c | 60.3±0.11a | 44.6±0.02h | 18.9±0.04d | -- |
aFGJ | 4.82±0.01d | 63.3±0.01c | 40.2±0.02d | 12.5±0.02c | 0.6±0.05c | |
GSSW | 4.50±0.02b | 61.9±0.06b | 59.8±0.06g | 11.2±0.03b | -- | |
CK | 5.21±0.02h | 72.5±0.12g | 33.2±0.06a | 10.2±0.02a | 1.2±0.04f | |
70 | YB | 4.25±0.01a | 67.2±0.05e | 44.5±0.03h | 20.2±0.03e | -- |
aFGJ | 4.80±0.02d | 65.1±0.01d | 38.7±0.06c | 13.9±0.05f | 0.6±0.02c | |
GSSW | 4.20±0.01a | 64.5±0.03d | 52.3±0.03k | 13.2±0.03g | -- | |
CK | 5.17±0.05gh | 78.5±0.12h | 35.5±0.04b | 11.2±0.01b | 2.0±0.01ab |
表3 时间和添加剂对苜蓿青贮发酵品质的影响
Table 3 Effect of time and silage additive on the fermentation quality of alfalfa silage
时间Time /d | 添加剂 Silage additive | pH | 氨氮/总氮 Ammonia nitrogen/Total nitrogen | 挥发性脂肪酸 Volatile fatty acid/(g·kg-1DM) | ||
---|---|---|---|---|---|---|
乳酸 Lactic acid | 乙酸 Acetic acid | 丁酸 Butyric acid | ||||
30 | YB | 5.02±0.02ef | 60.5±0.03a | 42.3±0.01e | 12.4±0.04c | |
aFGJ | 5.13±0.01fg | 63.1±0.03c | 32.9±0.06a | 11.1±0.01b | 0.1±0.01a | |
GSSW | 5.08±0.07e | 59.7±0.05a | 43.2±0.04f | 11.2±0.02b | -- | |
CK | 5.57±0.07i | 69.5±0.07f | 33.4±0.05a | 10.5±0.04a | 0.9±0.12d | |
50 | YB | 4.56±0.02c | 60.3±0.11a | 44.6±0.02h | 18.9±0.04d | -- |
aFGJ | 4.82±0.01d | 63.3±0.01c | 40.2±0.02d | 12.5±0.02c | 0.6±0.05c | |
GSSW | 4.50±0.02b | 61.9±0.06b | 59.8±0.06g | 11.2±0.03b | -- | |
CK | 5.21±0.02h | 72.5±0.12g | 33.2±0.06a | 10.2±0.02a | 1.2±0.04f | |
70 | YB | 4.25±0.01a | 67.2±0.05e | 44.5±0.03h | 20.2±0.03e | -- |
aFGJ | 4.80±0.02d | 65.1±0.01d | 38.7±0.06c | 13.9±0.05f | 0.6±0.02c | |
GSSW | 4.20±0.01a | 64.5±0.03d | 52.3±0.03k | 13.2±0.03g | -- | |
CK | 5.17±0.05gh | 78.5±0.12h | 35.5±0.04b | 11.2±0.01b | 2.0±0.01ab |
[1] |
Wen AY, Yuan XJ, Wang J, et al. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage[J]. Animal Feed Sci Technol, 2017, 223:141-148.
doi: 10.1016/j.anifeedsci.2016.11.017 URL |
[2] | Jones DJC. The biochemistry of silage[J]. The Journal of Agricultural Science, 1991, 117(3):386-386. |
[3] | Uher D, Konjačić M, Jareš D, et al. The effect of bacterial inoculant on chemical composition and fermentation of alfalfa silage[J]. J Central Eur Agric, 2019, 20(2):657-664. |
[4] | 王楠, 陈诚轩, 谢鹏, 等. 甜高粱作为反刍动物饲料的最佳收获期的研究[J]. 生物技术通报, 2018, 34(10):100-107. |
Wang N, Chen CX, Xie P, et al. The best harvest time of sweet Sorghum for forge based on biomass and nutritional quality[J]. Biotechnol Bull, 2018, 34(10):100-107. | |
[5] | 俸祥仁, 潘堂峰, 李芳芳, 等. 不同发酵剂对甘蔗叶梢青贮发酵品质的影响[J]. 福建农业科技, 2019(7):29-32. |
Feng XR, Pan TF, Li FF, et al. Effects of different starter cultures on silage fermentation quality of sugarcane tips[J]. Fujian Agric Sci Technol, 2019(7):29-32. | |
[6] |
Fijałkowska M, Przemieniecki SW, Purwin C, et al. The effect of an additive containing three Lactobacillus species on the fermentation pattern and microbiological status of silage[J]. J Sci Food Agric, 2020, 100(3):1174-1184.
doi: 10.1002/jsfa.v100.3 URL |
[7] |
Alhaag H, Yuan XJ, Mala A, et al. Fermentation characteristics of Lactobacillus plantarum and Pediococcus species isolated from sweet Sorghum silage and their application as silage inoculants[J]. Appl Sci, 2019, 9(6):1247.
doi: 10.3390/app9061247 URL |
[8] |
Kuppusamy P, Kim D, Soundharrajan I, et al. Low-carbohydrate tolerant LAB strains identified from rumen fluid:investigation of probiotic activity and legume silage fermentation[J]. Microorganisms, 2020, 8(7):1044.
doi: 10.3390/microorganisms8071044 URL |
[9] |
Guo XS, Undersander DJ, Combs DK. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue[J]. J Dairy Sci, 2013, 96(3):1735-1744.
doi: 10.3168/jds.2045-5786 pmid: 23332843 |
[10] |
Li DX, Wang YP, Zhang YC, et al. Evaluation of lactic acid bacteria isolated from alfalfa for silage fermentation[J]. Grassl Sci, 2018, 64(3):190-198.
doi: 10.1111/grs.2018.64.issue-3 URL |
[11] |
Chen L, Li JF, et al. Effects of lactic acid bacteria inoculants and fibrolytic enzymes on the fermentation quality, in vitro degradability, ruminal variables and microbial communities of high-moisture alfalfa silage[J]. Grassl Sci, 2019, 65(4):216-225.
doi: 10.1111/grs.12240 |
[12] |
Suryadi U, Nugraheni YR, Prasetyo AF, et al. Evaluation of effects of a novel probiotic feed supplement on the quality of broiler meat[J]. Vet World, 2019, 12(11):1775-1778.
doi: 10.14202/vetworld. URL |
[13] | 卢强, 撒多文, 都帅, 等. 盐碱地苜蓿青贮品质及微生物群落的研究[J]. 黑龙江畜牧兽医, 2020(2):96-100, 150. |
Lu Q, Sa DW, Du S, et al. Study on the quality and microbial community of alfalfa silage in saline-alkali soil[J]. Heilongjiang Animal Sci Vet Med, 2020(2):96-100, 150. | |
[14] | 包维臣. 苜蓿青贮发酵过程中微生物多样性动态变化及其功能基因组研究[D]. 呼和浩特:内蒙古农业大学, 2019. |
Bao WC. Dynamics variation of microbial diversity and functional geneomics during alfalfa silage fermentation process[D]. Hohhot:Inner Mongolia Agricultural University, 2019. | |
[15] | Xin PC, Huang JH, Yuan XJ, et al. Research on mixed ensiling of alfalfa and whole plant corn[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(4):39-42. |
[16] |
Wang S, Dong Z, Li J, et al. Pediococcus acidilactici strains as silage inoculants for improving the fermentation quality, nutritive value andin vitroruminal digestibility in different forages[J]. J Appl Microbiol, 2019, 126(2):424-434.
doi: 10.1111/jam.14146 pmid: 30383317 |
[17] | Braman WL, Kurtz JE, Bryan KA. Effect of fermented corn silage density and bacterial inoculants on corn silage pH and fermentation end products[J]. J Animal Sci, 2016, 94(S1):27. |
[18] |
Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Appl Environ Microbiol, 2012, 78(23):8264-8271.
doi: 10.1128/AEM.01821-12 URL |
[19] |
Wang Y, Chen X, Wang C, et al. The bacterial community and fermentation quality of mulberry(Morus alba)leaf silage with or without Lactobacillus casei and sucrose[J]. Bioresour Technol, 2019, 293:122059.
doi: 10.1016/j.biortech.2019.122059 URL |
[20] | 刘婷, 王腾飞, 罗宽, 等. 苜蓿青贮添加剂研究进展[J]. 饲料研究, 2016(19):12-14, 22. |
Liu T, Wang TF, Luo K, et al. Research progress of alfalfa silage additives[J]. Feed Res, 2016(19):12-14, 22. | |
[21] | 李旺, 马召稳, 李元晓, 等. 苜蓿青贮优势菌种筛选及应用效果[J]. 动物营养学报, 2020, 32(4):1883-1890. |
Li W, Ma ZW, Li YX, et al. Screening and application effects of dominant strains of alfalfa silage[J]. Chin J Animal Nutr, 2020, 32(4):1883-1890. | |
[22] |
Bai J, Xu DM, Xie DM, et al. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage[J]. Bioresour Technol, 2020, 315:123881.
doi: 10.1016/j.biortech.2020.123881 URL |
[23] | Rychen G, Aquilina G, et al. Safety and efficacy of Bacillus amyloliquefaciens(NCIMB 30229)as a silage additive for all animal species[J]. EFSA J, 2017, 15(6):4860. |
[24] |
Li FH, Ding ZT, Adesogan AT, et al. Effects of class IIa bacteriocin-producing Lactobacillus species on fermentation quality and aerobic stability of alfalfa silage[J]. Animals, 2020, 10(9):1575.
doi: 10.3390/ani10091575 URL |
[25] |
Mariotti M, Fratini F, Cerri D, et al. Use of fresh scotta whey as an additive for alfalfa silage[J]. Agronomy, 2020, 10(3):365.
doi: 10.3390/agronomy10030365 URL |
[26] |
Liu QH, Dong ZH, Shao T. Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air[J]. Animal Feed Sci Technol, 2018, 236:29-38.
doi: 10.1016/j.anifeedsci.2017.11.022 URL |
[27] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[28] |
Tohno M, Kitahara M, Irisawa T, et al. Lactobacillus silagei sp. nov., isolated from orchardgrass silage[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_12):4613-4618.
doi: 10.1099/ijs.0.053124-0 URL |
[29] |
Zhao SS, Wang YP, Yang FY, et al. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality[J]. J Appl Microbiol, 2020, 129(2):233-242.
doi: 10.1111/jam.14604 pmid: 32027450 |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[3] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[4] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[5] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[6] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[7] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[8] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[9] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
[10] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[11] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[12] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[13] | 陈梦言, 白洁, 柯文灿, 许冬梅, 艾琳, 郭旭生. 青贮饲料微生物群落组成与功能研究进展[J]. 生物技术通报, 2021, 37(9): 11-23. |
[14] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[15] | 姜富贵, 成海建, 魏晨, 张召坤, 苏文政, 时光, 宋恩亮. 糖蜜添加量对杂交构树青贮发酵品质和微生物多样性的影响[J]. 生物技术通报, 2021, 37(9): 68-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||