生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 10-17.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1301
收稿日期:
2021-10-13
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
汤晓丽,女,博士,讲师,研究方向:植物逆境分子生物学;E-mail:基金资助:
TANG Xiao-li1(), JIANG Fu-dong2, ZHANG Hong-xia1()
Received:
2021-10-13
Published:
2022-10-26
Online:
2022-11-11
摘要:
泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是生物体中一种重要的蛋白平衡调节系统,通过泛素化降解不同的靶蛋白,参与细胞中复杂多样的生命活动过程。SINA E3泛素连接酶是UPS系统中E3泛素连接酶的一个重要类型,具有广泛而重要的生物学作用。本研究阐述了植物SINA E3泛素连接酶的功能研究现状。围绕SINA E3泛素连接酶在植物正常生长发育、逆境胁迫响应、植物与其他生物的相互作用以及植物细胞自噬4个方面展开论述。总结了目前植物SINA E3泛素连接酶的生物学功能,同时也指出了植物SINA E3泛素连接酶功能研究所面临的诸多问题及对未来的展望,为植物SINA E3泛素连接酶功能的进一步研究提供参考。
汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17.
TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant[J]. Biotechnology Bulletin, 2022, 38(10): 10-17.
物种Species | 基因名称Gene name | 登录号Accession No. | 基因座/位置Locus/Location | 参考文献Reference |
---|---|---|---|---|
拟南芥Arabidopsis thaliana | AtSINA1 | NP_181729.1 | At2g41980 | [ |
AtSINA2 | NP_191363.1 | At3g58040 | ||
AtSINA3 | NP_567118.1 | At3g61790 | ||
AtSINA4 | NP_194517.1 | At4g27880 | ||
AtSINA5 | AAM11573.1 | At5g53360 | ||
杨树Populus trichocarpa | PtSINA1 | fgenesh4_pg.C_LG_I000093 | LG_I:670238-671581 | [ |
PtSINA2 | fgenesh4_pm.C_LG_I000095 | LG_I:2115588-2117000 | ||
PtSINA3 | gw1.II.2951.1 | LG_II:13177725-13180474 | ||
PtSINA4 | estExt_Genewise1_v1.C_LG_III0871 | LG_III:17277104-17281238 | ||
PtSINA5 | eugene3.00031885 | LG_III:18885651-18887185 | ||
PtSINA6 | estExt_Genewise1_v1.C_LG_VI0616 | LG_VI:10945383-10948295 | ||
PtSINA7 | estExt_fgenesh4_pg.C_LG_XII0205 | LG_XII:1967106-1970129 | ||
PtSINA8 | gw1.XIV.1720.1 | LG_XIV:3531188-3533571 | ||
PtSINA9 | gw1.XV.382.1 | LG_XV:877405-880050 | ||
PtSINA10 | grail3.0004018901 | LG_XVI:3971458-3975863 | ||
水稻Oryza sativa | OsSINA1 | NP_001042518.1 | Os01g13370 | [ |
OsSINA2 | NP_001045773.1 | Os02g03620 | ||
OsSINA3 | NP_001046599.1 | Os02g19140 | ||
OsSINA4 | ABF96019 | Os03g24040 | ||
OsSINA5 | NP_001054994.1 | Os05g14860 | ||
OsSINA6 | NP_001060528.1 | Os07g46560 | ||
玉米Zea mays | ZmSINA1 | EF434384 | 100170242 | [ |
ZmSINA2 | EF434387 | |||
ZmSINA3 | EF434383 | |||
ZmSINA4 | EF434385 | |||
ZmSINA5 | EF434382 | |||
ZmSINA6 | EF434386 | |||
苜蓿Medicago truncatula | MtSINA1 | ABW70159.1 | EU189945 | [ |
MtSINA2 | ABW70160.1 | EU189946 | ||
MtSINA3 | ABW70161.1 | EU189947 | ||
MtSINA4 | ABW70162.1 | EU189948 | ||
MtSINA5 | ABW70163.1 | EU189949 | ||
MtSINA6 | ABW70164.1 | EU189950 | ||
百脉根Lotus japonicus | LjSINA1 | CCG06551.1 | HE664113 | [ |
LjSINA2 | CCG06552.1 | HE664114 | ||
LjSINA3 | CCG06553.1 | HE664115 | ||
LjSINA4 | CCG06554.1 | HE664116 | ||
LjSINA5 | CCG06555.1 | HE664117 | ||
LjSINA6 | CCG06556.1 | HE664118 | ||
番茄Solanum lycopersicum | SlSINA1 | AK324518 | 101263446 | [ |
SlSINA2 | BT013026 | |||
SlSINA3 | AK322153 | |||
SlSINA4 | AK320390 | |||
SlSINA5 | AK321160 | |||
SlSINA6 | XM_004248034 | |||
苹果Malus×domestica | MdSINA1 | MD01G1082000 | Chr.01:18851198-18855278 | [ |
MdSINA2 | MD01G1218700 | Chr.01:31083173-31086177 | ||
MdSINA3 | MD02G1290000 | Chr.02:34598424-34602594 | ||
MdSINA4 | MD03G1012000 | Chr.03:919096-923194 | ||
MdSINA5 | MD06G1109400 | Chr.06:24892232-24897122 | ||
MdSINA6 | MD07G1037000 | Chr.07:3041621-3045379 | ||
MdSINA7 | MD07G1150400 | Chr.07:21874143-21877048 | ||
MdSINA8 | MD07G1288600 | Chr.07:34966306-34969128 | ||
MdSINA9 | MD11G1014900 | Chr.11:1183310-1187186 | ||
MdSINA10 | MD12G1055100 | Chr12:6229125-6233025 | ||
MdSINA11 | MD14G1054300 | Chr.14:5470040-5474302 | ||
香蕉Musa acuminata | MaSINA1 | XP_009416451 | 103997048 | [ |
表1 目前研究报道的植物体中的SINA
Table 1 Reported SINA genes in plant at present
物种Species | 基因名称Gene name | 登录号Accession No. | 基因座/位置Locus/Location | 参考文献Reference |
---|---|---|---|---|
拟南芥Arabidopsis thaliana | AtSINA1 | NP_181729.1 | At2g41980 | [ |
AtSINA2 | NP_191363.1 | At3g58040 | ||
AtSINA3 | NP_567118.1 | At3g61790 | ||
AtSINA4 | NP_194517.1 | At4g27880 | ||
AtSINA5 | AAM11573.1 | At5g53360 | ||
杨树Populus trichocarpa | PtSINA1 | fgenesh4_pg.C_LG_I000093 | LG_I:670238-671581 | [ |
PtSINA2 | fgenesh4_pm.C_LG_I000095 | LG_I:2115588-2117000 | ||
PtSINA3 | gw1.II.2951.1 | LG_II:13177725-13180474 | ||
PtSINA4 | estExt_Genewise1_v1.C_LG_III0871 | LG_III:17277104-17281238 | ||
PtSINA5 | eugene3.00031885 | LG_III:18885651-18887185 | ||
PtSINA6 | estExt_Genewise1_v1.C_LG_VI0616 | LG_VI:10945383-10948295 | ||
PtSINA7 | estExt_fgenesh4_pg.C_LG_XII0205 | LG_XII:1967106-1970129 | ||
PtSINA8 | gw1.XIV.1720.1 | LG_XIV:3531188-3533571 | ||
PtSINA9 | gw1.XV.382.1 | LG_XV:877405-880050 | ||
PtSINA10 | grail3.0004018901 | LG_XVI:3971458-3975863 | ||
水稻Oryza sativa | OsSINA1 | NP_001042518.1 | Os01g13370 | [ |
OsSINA2 | NP_001045773.1 | Os02g03620 | ||
OsSINA3 | NP_001046599.1 | Os02g19140 | ||
OsSINA4 | ABF96019 | Os03g24040 | ||
OsSINA5 | NP_001054994.1 | Os05g14860 | ||
OsSINA6 | NP_001060528.1 | Os07g46560 | ||
玉米Zea mays | ZmSINA1 | EF434384 | 100170242 | [ |
ZmSINA2 | EF434387 | |||
ZmSINA3 | EF434383 | |||
ZmSINA4 | EF434385 | |||
ZmSINA5 | EF434382 | |||
ZmSINA6 | EF434386 | |||
苜蓿Medicago truncatula | MtSINA1 | ABW70159.1 | EU189945 | [ |
MtSINA2 | ABW70160.1 | EU189946 | ||
MtSINA3 | ABW70161.1 | EU189947 | ||
MtSINA4 | ABW70162.1 | EU189948 | ||
MtSINA5 | ABW70163.1 | EU189949 | ||
MtSINA6 | ABW70164.1 | EU189950 | ||
百脉根Lotus japonicus | LjSINA1 | CCG06551.1 | HE664113 | [ |
LjSINA2 | CCG06552.1 | HE664114 | ||
LjSINA3 | CCG06553.1 | HE664115 | ||
LjSINA4 | CCG06554.1 | HE664116 | ||
LjSINA5 | CCG06555.1 | HE664117 | ||
LjSINA6 | CCG06556.1 | HE664118 | ||
番茄Solanum lycopersicum | SlSINA1 | AK324518 | 101263446 | [ |
SlSINA2 | BT013026 | |||
SlSINA3 | AK322153 | |||
SlSINA4 | AK320390 | |||
SlSINA5 | AK321160 | |||
SlSINA6 | XM_004248034 | |||
苹果Malus×domestica | MdSINA1 | MD01G1082000 | Chr.01:18851198-18855278 | [ |
MdSINA2 | MD01G1218700 | Chr.01:31083173-31086177 | ||
MdSINA3 | MD02G1290000 | Chr.02:34598424-34602594 | ||
MdSINA4 | MD03G1012000 | Chr.03:919096-923194 | ||
MdSINA5 | MD06G1109400 | Chr.06:24892232-24897122 | ||
MdSINA6 | MD07G1037000 | Chr.07:3041621-3045379 | ||
MdSINA7 | MD07G1150400 | Chr.07:21874143-21877048 | ||
MdSINA8 | MD07G1288600 | Chr.07:34966306-34969128 | ||
MdSINA9 | MD11G1014900 | Chr.11:1183310-1187186 | ||
MdSINA10 | MD12G1055100 | Chr12:6229125-6233025 | ||
MdSINA11 | MD14G1054300 | Chr.14:5470040-5474302 | ||
香蕉Musa acuminata | MaSINA1 | XP_009416451 | 103997048 | [ |
[1] |
Vierstra RD. The ubiquitin-26S proteasome system at the Nexus of plant biology[J]. Nat Rev Mol Cell Biol, 2009, 10(6):385-397.
doi: 10.1038/nrm2688 URL |
[2] |
Dikic I. Proteasomal and autophagic degradation systems[J]. Annu Rev Biochem, 2017, 86:193-224.
doi: 10.1146/annurev-biochem-061516-044908 pmid: 28460188 |
[3] |
Harper JW, Schulman BA. Structural complexity in ubiquitin recognition[J]. Cell, 2006, 124(6):1133-1136.
pmid: 16564007 |
[4] |
Ravid T, Hochstrasser M. Diversity of degradation signals in the ubi-quitin-proteasome system[J]. Nat Rev Mol Cell Biol, 2008, 9(9):679-690.
doi: 10.1038/nrm2468 URL |
[5] |
Sadanandom A, Bailey M, Ewan R, et al. The ubiquitin-proteasome system:central modifier of plant signalling[J]. New Phytol, 2012, 196(1):13-28.
doi: 10.1111/j.1469-8137.2012.04266.x pmid: 22897362 |
[6] |
Lee JH, Kim WT. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis[J]. Mol Cells, 2011, 31(3):201-208.
doi: 10.1007/s10059-011-0031-9 URL |
[7] |
Hu G, Fearon ER. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins[J]. Mol Cell Biol, 1999, 19(1):724-732.
doi: 10.1128/MCB.19.1.724 pmid: 9858595 |
[8] |
Carthew RW, Rubin GM. Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye[J]. Cell, 1990, 63(3):561-577.
pmid: 2146028 |
[9] |
Della NG, Senior PV, Bowtell DD. Isolation and characterisation of murine homologues of the Drosophila seven in absentia gene(sina)[J]. Development, 1993, 117(4):1333-1343.
doi: 10.1242/dev.117.4.1333 pmid: 8404535 |
[10] |
Li S, Li Y, Carthew RW, et al. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack[J]. Cell, 1997, 90(3):469-478.
pmid: 9267027 |
[11] |
Hu G, Chung YL, Glover T, et al. Characterization of human homologs of the Drosophila seven in absentia(sina)gene[J]. Genomics, 1997, 46(1):103-111.
pmid: 9403064 |
[12] |
Wheeler TC, Chin LS, Li YK, et al. Regulation of synaptophysin degradation by mammalian homologues of seven in absentia[J]. J Biol Chem, 2002, 277(12):10273-10282.
doi: 10.1074/jbc.M107857200 pmid: 11786535 |
[13] | Franck T, Krueger R, et al. Mutation analysis of the seven in absentia homolog 1(SIAH1)gene in Parkinson’s disease[J]. J Neural Transm(Vienna), 2006, 113(12):1903-1908. |
[14] |
Fukuba H, Yamashita H, et al. Siah-1 facilitates ubiquitination and degradation of factor inhibiting HIF-1alpha(FIH)[J]. Biochem Biophys Res Commun, 2007, 353(2):324-329.
doi: 10.1016/j.bbrc.2006.12.051 URL |
[15] |
Sun J, Zhang XJ, Han YC, et al. Overexpression of seven in absentia homolog 2 protein in human breast cancer tissues is associated with the promotion of tumor cell malignant behavior in in vitro[J]. Oncol Rep, 2016, 36(3):1301-1312.
doi: 10.3892/or.2016.4976 URL |
[16] |
Zhang CY, Hao ZY, Ning YS, et al. SINA E3 ubiquitin ligases:versatile moderators of plant growth and stress response[J]. Mol Plant, 2019, 12(5):610-612.
doi: 10.1016/j.molp.2019.03.013 URL |
[17] | Wang M, Jin Y, Fu JJ, et al. Genome-wide analysis of SINA family in plants and their phylogenetic relationships[J]. DNA Seq, 2008, 19(3):206-216. |
[18] |
den Herder G, de Keyser A, de Rycke R, et al. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula[J]. Plant Physiol, 2008, 148(1):369-382.
doi: 10.1104/pp.108.119453 pmid: 18599652 |
[19] |
den Herder G, Yoshida S, Antolín-Llovera M, et al. Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection[J]. Plant Cell, 2012, 24(4):1691-1707.
doi: 10.1105/tpc.110.082248 URL |
[20] |
Wang WJ, Fan YH, Niu XL, et al. Functional analysis of the seven in absentia ubiquitin ligase family in tomato[J]. Plant Cell Environ, 2018, 41(3):689-703.
doi: 10.1111/pce.13140 URL |
[21] |
Li HL, Wang X, Ji XL, et al. Genome-wide identification of apple ubiquitin SINA E3 ligase and functional characterization of MdSINA2[J]. Front Plant Sci, 2020, 11:1109.
doi: 10.3389/fpls.2020.01109 URL |
[22] |
Fan ZQ, Chen JY, et al. The banana fruit SINA ubiquitin ligase MaSINA1 regulates the stability of MaICE1 to be negatively involved in cold stress response[J]. Front Plant Sci, 2017, 8:995.
doi: 10.3389/fpls.2017.00995 URL |
[23] |
Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170.
doi: 10.1038/nature00998 URL |
[24] |
Park BS, Sang WG, Yeu SY, et al. Post-translational regulation of FLC is mediated by an E3 ubiquitin ligase activity of SINAT5 in Arabidopsis[J]. Plant Sci, 2007, 173(2):269-275.
doi: 10.1016/j.plantsci.2007.06.001 URL |
[25] |
Samach A, Onouchi H, Gold SE, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471):1613-1616.
pmid: 10834834 |
[26] |
Simpson GG, Dean C. Arabidopsis, the Rosetta stone of flowering time?[J]. Science, 2002, 296(5566):285-289.
pmid: 11951029 |
[27] |
Park BS, Eo HJ, Jang IC, et al. Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1[J]. Biochem Biophys Res Commun, 2010, 398(2):242-246.
doi: 10.1016/j.bbrc.2010.06.067 URL |
[28] |
Alabadí D, Oyama T, Yanovsky MJ, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531):880-883.
pmid: 11486091 |
[29] |
Mizoguchi T, Wheatley K, Hanzawa Y, et al. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis[J]. Dev Cell, 2002, 2(5):629-641.
pmid: 12015970 |
[30] |
Welsch R, et al. Transcription factor RAP2. 2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabi-dopsis leaves[J]. Plant Physiol, 2007, 145(3):1073-1085.
pmid: 17873090 |
[31] |
Yang CJ, Zhang C, Lu YN, et al. The mechanisms of brassinosteroids’ action:from signal transduction to plant development[J]. Mol Plant, 2011, 4(4):588-600.
doi: 10.1093/mp/ssr020 URL |
[32] |
Vert G, Chory J. Downstream nuclear events in brassinosteroid signalling[J]. Nature, 2006, 441(7089):96-100.
doi: 10.1038/nature04681 URL |
[33] |
Nolan TM, Brennan B, Yang MR, et al. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival[J]. Dev Cell, 2017, 41(1):33-46. e7.
doi: S1534-5807(17)30166-1 pmid: 28399398 |
[34] |
Ning YS, Jantasuriyarat C, Zhao QZ, et al. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice[J]. Plant Physiol, 2011, 157(1):242-255.
doi: 10.1104/pp.111.180893 pmid: 21719639 |
[35] |
Ning YS, et al. OsDIS1-mediated stress response pathway in rice[J]. Plant Signal Behav, 2011, 6(11):1684-1686.
doi: 10.4161/psb.6.11.17916 pmid: 22067990 |
[36] |
Bao Y, Wang CT, et al. The tumor necrosis factor receptor-associated factor(TRAF)-like family protein SEVEN IN ABSENTIA 2(SINA2)promotes drought tolerance in an ABA-dependent manner in Arabidopsis[J]. New Phytol, 2014, 202(1):174-187.
doi: 10.1111/nph.12644 URL |
[37] |
Chen Y, Fokar M, Kang M, et al. Phosphorylation of Arabidopsis SINA2 by CDKG1 affects its ubiquitin ligase activity[J]. BMC Plant Biol, 2018, 18(1):147.
doi: 10.1186/s12870-018-1364-8 URL |
[38] |
Shi YT, Ding YL, Yang SH. Cold signal transduction and its interplay with phytohormones during cold acclimation[J]. Plant Cell Physiol, 2015, 56(1):7-15.
doi: 10.1093/pcp/pcu115 pmid: 25189343 |
[39] |
Xia FN, Zeng BQ, Liu HS, et al. SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate abscisic acid signaling[J]. Plant Cell, 2020, 32(10):3290-3310.
doi: 10.1105/tpc.20.00267 URL |
[40] |
den Herder G, van Isterdael G, et al. The roots of a new green revolution[J]. Trends Plant Sci, 2010, 15(11):600-607.
doi: 10.1016/j.tplants.2010.08.009 pmid: 20851036 |
[41] |
Yoshida S, Parniske M. Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation[J]. J Biol Chem, 2005, 280(10):9203-9209.
doi: 10.1074/jbc.M411665200 pmid: 15572355 |
[42] |
Miao M, Niu XL, Kud J, et al. The ubiquitin ligase SEVEN IN ABSENTIA(SINA)ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling[J]. New Phytol, 2016, 211(1):138-148.
doi: 10.1111/nph.13890 pmid: 26879496 |
[43] |
Huang WZ, et al. SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level[J]. New Phytol, 2013, 197(4):1214-1224.
doi: 10.1111/nph.12096 pmid: 23278405 |
[44] |
Qi H, Xia FN, Xie LJ, et al. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis[J]. Plant Cell, 2017, 29(4):890-911.
doi: 10.1105/tpc.17.00056 URL |
[45] |
Qi H, Li J, Xia FN, et al. Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13[J]. Plant Cell, 2020, 32(1):263-284.
doi: 10.1105/tpc.19.00413 URL |
[46] |
Zhuang XH, Chung KP, Luo MQ, et al. Autophagosome biogenesis and the endoplasmic Reticulum:a plant perspective[J]. Trends Plant Sci, 2018, 23(8):677-692.
doi: 10.1016/j.tplants.2018.05.002 URL |
[47] | Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy[J]. Sci Signal, 2010, 3(123):ra42. |
[48] |
Xia PY, et al. WASH inhibits autophagy through suppression of beclin 1 ubiquitination[J]. EMBO J, 2013, 32(20):2685-2696.
doi: 10.1038/emboj.2013.189 pmid: 23974797 |
[49] |
Xie YC, Kang R, Sun XF, et al. Posttranslational modification of autophagy-related proteins in macroautophagy[J]. Autophagy, 2015, 11(1):28-45.
doi: 10.4161/15548627.2014.984267 pmid: 25484070 |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[4] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[5] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[6] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[7] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[8] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[9] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[10] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[11] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[12] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[13] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[14] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[15] | 钱静洁, 林苏梦, 张冬平, 高勇. 光敏色素互作因子参与生长素调控的植物生长发育[J]. 生物技术通报, 2022, 38(10): 29-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||