生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1586
• 综述与专论 • 下一篇
赵杰1,2(), 李安1,2, 梁刚1,2, 靳欣欣1,2, 潘立刚1,2()
收稿日期:
2021-12-23
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
赵杰,女,助理研究员,研究方向:农产品质量安全;E-mail:基金资助:
ZHAO Jie1,2(), LI An1,2, LIANG Gang1,2, JIN Xin-xin1,2, PAN Li-gang1,2()
Received:
2021-12-23
Published:
2022-10-26
Online:
2022-11-11
摘要:
环状RNA(circRNAs)是一类由共价键连接形成环形结构的单链内源性RNA分子。作为非编码RNA家族中重要的成员之一,近年来受到广泛的关注。现有研究已证实circRNAs广泛存在于真核生物中。高通量测序技术以及生物信息学的发展,极大地加速了circRNAs研究进展。研究表明,circRNAs具有结构稳定、序列保守以及组织/发育特异性表达等特点。目前,研究揭示circRNAs的主要功能包括作为miRNA的海绵、参与植物应激反应、调控亲本基因表达等。本文在总结其分类和主要特征的基础上,着重阐述了植物circRNAs的生物学功能,为circRNAs的进一步研究提供参考。
赵杰, 李安, 梁刚, 靳欣欣, 潘立刚. 植物环状RNA的研究新进展[J]. 生物技术通报, 2022, 38(10): 1-9.
ZHAO Jie, LI An, LIANG Gang, JIN Xin-xin, PAN Li-gang. Research Progress in the Biological Functions of Plant circRNAs[J]. Biotechnology Bulletin, 2022, 38(10): 1-9.
植物Plants | 测序样本Sequencing samples | circRNA数量Number of circRNAs | 参考文献Reference |
---|---|---|---|
拟南芥 Arabidopsis thaliana | 种子 Seed | 30 923 | [ |
番茄 Solanum lycopersicum L. | 果实 Fruit | 3 796 | [ |
大豆 Glycine max | 叶/根/茎 Leaf/root/stem | 5 372 | [ |
水稻 Oryza sativa L. | 叶片 Leaf | 6 612 | [ |
玉米 Zea mays | 茎 Stem | 1 199 | [ |
小麦 Triticum aestivum L. | 根 Root | 285-478 | [ |
马铃薯 Solanum tuberosum L. | 茎 Stem | 2 098 | [ |
葡萄 Vitis vinifera L. | 根/茎/叶/花/果实 Root/stem/leaf/flower/berry | 1 432 | [ |
沙棘 Hippophae rhamnoides L. | 果实 Fruit | 2 616 | [ |
杜梨 Pyrus betulifolia | 叶片 Leaf | 899 | [ |
猕猴桃 Actinidia | 叶/根/茎 Leaf/root/stem | 3 582 | [ |
茶叶 Camellia sinensis | 叶芽/幼叶 Leaf bud/young leaf | 3 174 | [ |
表1 不同植物组织中已鉴定出的circRNAs数量统计(2017-2021)
Table 1 Statistics of identified circRNAs in different plant tissues(2017-2021)
植物Plants | 测序样本Sequencing samples | circRNA数量Number of circRNAs | 参考文献Reference |
---|---|---|---|
拟南芥 Arabidopsis thaliana | 种子 Seed | 30 923 | [ |
番茄 Solanum lycopersicum L. | 果实 Fruit | 3 796 | [ |
大豆 Glycine max | 叶/根/茎 Leaf/root/stem | 5 372 | [ |
水稻 Oryza sativa L. | 叶片 Leaf | 6 612 | [ |
玉米 Zea mays | 茎 Stem | 1 199 | [ |
小麦 Triticum aestivum L. | 根 Root | 285-478 | [ |
马铃薯 Solanum tuberosum L. | 茎 Stem | 2 098 | [ |
葡萄 Vitis vinifera L. | 根/茎/叶/花/果实 Root/stem/leaf/flower/berry | 1 432 | [ |
沙棘 Hippophae rhamnoides L. | 果实 Fruit | 2 616 | [ |
杜梨 Pyrus betulifolia | 叶片 Leaf | 899 | [ |
猕猴桃 Actinidia | 叶/根/茎 Leaf/root/stem | 3 582 | [ |
茶叶 Camellia sinensis | 叶芽/幼叶 Leaf bud/young leaf | 3 174 | [ |
图1 circRNAs的分类 A:来源于外显子、外显子-内含子的circRNA;B:来源于内含子的circRNA;C:来源于转运RNA内含子的circRNA[23]。A、B中不同颜色的矩形表示外显子,绿色直线表示内含子,蓝色箭头表示规范剪接形成了线性mRNA,红色箭头表示非规范剪切,即形成了环状RNA
Fig.1 Classification of circular RNAs A:circRNA from exonic and exon-intron RNAs;B:circRNA from intron RNAs;C:circRNA from tRNA introns[23]. In A and B,rectangles in different colors represent exons,green straight lines represent introns,the blue arrows indicate that the canonical splicing produces linear mRNAs,the red arrows represent noncanonical splicing(back-splicing),i.e.,circRNA is formed
图2 circRNA的功能 在细胞核中富集的EIciRNAs和ciRNAs通过与RNA聚合酶Pol II相互作用调控基因转录,ecircRNAs通常在胞质中,作为miRNA海绵、RBP海绵和传递中间体起作用[23]。图中不同颜色的矩形表示外显子,绿色直线表示内含子,红色箭头表示由非规范剪切形成了环状RNA
Fig.2 circRNA functions EIciRNAs and ciRNAs enriched in nucleus may regulate gene transcription through interaction with Pol II,ecircRNAs act as miRNA sponges,RBP sponges and delivery intermediates in cytoplasmic[23]. Rectangles in different colors represent exons,green straight lines represent introns,and the red arrows represent noncanonical splicing(back-splicing)and circRNAs are formed
图3 大豆circRNAs-gma_circ_0000569及gma_circ_0000741在冷胁迫下的调节网络
Fig. 3 Regulation network of circRNAs-gma_circ_0000569 and gma_circ_0000741 of soybean under cold stress
植物 Plants | 应激反应 Stress response | 差异表达circRNAs数量 Numbers of differentially expressed circRNAs | 参考文献 Reference |
---|---|---|---|
番茄 Solanum lycopersicum L. | 黄叶卷曲病毒 TYLCV | 83 | [ |
猕猴桃 Actinidia | 丁香假单胞菌 Canker pathogen | 584 | [ |
棉花 Gossypium | 黄萎病 Verticillium wilt | 280 | [ |
大豆 Glycine max | 低温 Low-temperature | 13 | [ |
杨树 Populus L. | 低氮 Low-nitrogen | 163 | [ |
番茄 Solanum lycopersicum L. | 干旱和高温 Drought and heat | 4/7/9 | [ |
大豆 Glycine max | 低磷 Low-phosphorus | 120 | [ |
大豆 Glycine max | 干旱 Drought | 44 | [ |
杜梨 Pyrus betulifolia | 干旱Drought | 33 | [ |
番茄 Solanum lycopersicum L. | 低温 Low-temperature | 383 | [ |
番茄 Solanum lycopersicum L. | 高温 High-temperature | 73 | [ |
玉米/拟南芥 Zea mays/Arabidopsis thaliana | 干旱Drought stress | 357/446 | [ |
表2 circRNAs在植物应激反应中的研究(2017-2020)
Table 2 Studies on plant circRNAs in responding to biotic or abiotic stresses(2017-2020)
植物 Plants | 应激反应 Stress response | 差异表达circRNAs数量 Numbers of differentially expressed circRNAs | 参考文献 Reference |
---|---|---|---|
番茄 Solanum lycopersicum L. | 黄叶卷曲病毒 TYLCV | 83 | [ |
猕猴桃 Actinidia | 丁香假单胞菌 Canker pathogen | 584 | [ |
棉花 Gossypium | 黄萎病 Verticillium wilt | 280 | [ |
大豆 Glycine max | 低温 Low-temperature | 13 | [ |
杨树 Populus L. | 低氮 Low-nitrogen | 163 | [ |
番茄 Solanum lycopersicum L. | 干旱和高温 Drought and heat | 4/7/9 | [ |
大豆 Glycine max | 低磷 Low-phosphorus | 120 | [ |
大豆 Glycine max | 干旱 Drought | 44 | [ |
杜梨 Pyrus betulifolia | 干旱Drought | 33 | [ |
番茄 Solanum lycopersicum L. | 低温 Low-temperature | 383 | [ |
番茄 Solanum lycopersicum L. | 高温 High-temperature | 73 | [ |
玉米/拟南芥 Zea mays/Arabidopsis thaliana | 干旱Drought stress | 357/446 | [ |
[1] |
Chen G, Cui JW, Wang L, et al. Genome-wide identification of circular RNAs in Arabidopsis thaliana[J]. Front Plant Sci, 2017, 8:1678.
doi: 10.3389/fpls.2017.01678 URL |
[2] |
Qu SB, Yang XS, Li XL, et al. Circular RNA:a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 URL |
[3] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11):3852-3856.
doi: 10.1073/pnas.73.11.3852 URL |
[4] |
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1):155-160.
pmid: 7678559 |
[5] | Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions[J]. Exp Biol Med(Maywood), 2017, 242(11):1136-1141. |
[6] |
Shen YD, Guo XW, Wang WM. Identification and characterization of circular RNAs in zebrafish[J]. FEBS Lett, 2017, 591(1):213-220.
doi: 10.1002/1873-3468.12500 pmid: 27878987 |
[7] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157.
doi: 10.1261/rna.035667.112 pmid: 23249747 |
[8] |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 URL |
[9] |
Guo JU, Agarwal V, Guo HL, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409.
doi: 10.1186/s13059-014-0409-z pmid: 25070500 |
[10] |
Ye CY, Chen L, Liu C, et al. Widespread noncoding circular RNAs in plants[J]. New Phytol, 2015, 208(1):88-95.
doi: 10.1111/nph.13585 URL |
[11] |
Philips A, Nowis K, Stelmaszczuk M, et al. Arabidopsis thaliana cbp80, c2h2, and flk knockout mutants accumulate increased amounts of circular RNAs[J]. Cells, 2020, 9(9):1937.
doi: 10.3390/cells9091937 URL |
[12] |
Zhou R, Xu LP, Zhao LP, et al. Genome-wide identification of circRNAs involved in tomato fruit coloration[J]. Biochem Biophys Res Commun, 2018, 499(3):466-469.
doi: 10.1016/j.bbrc.2018.03.167 URL |
[13] |
Zhao W, Cheng YH, Zhang C, et al. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean[J]. Sci Rep, 2017, 7(1):5636.
doi: 10.1038/s41598-017-05922-9 pmid: 28717203 |
[14] |
Huang XP, Zhang HY, Guo R, et al. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice[J]. Planta, 2021, 253(2):26.
doi: 10.1007/s00425-020-03544-6 pmid: 33410920 |
[15] |
Han Y, Li XX, Yan Y, et al. Identification, characterization, and functional prediction of circular RNAs in maize[J]. Mol Genet Genomics, 2020, 295(2):491-503.
doi: 10.1007/s00438-019-01638-9 pmid: 31894398 |
[16] |
Xu YH, Ren YZ, Lin TB, et al. Identification and characterization of CircRNAs involved in the regulation of wheat root length[J]. Biol Res, 2019, 52(1):19.
doi: 10.1186/s40659-019-0228-5 pmid: 30947746 |
[17] |
Zhou R, Zhu YX, Zhao J, et al. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection[J]. Int J Mol Sci, 2017, 19(1):71.
doi: 10.3390/ijms19010071 URL |
[18] |
Gao Z, Li J, Luo M, et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related vv-circATS1[J]. Plant Physiol, 2019, 180(2):966-985.
doi: 10.1104/pp.18.01331 pmid: 30962290 |
[19] |
Zhang GY, Diao SF, Zhang T, et al. Identification and characterization of circular RNAs during the sea buckthorn fruit development[J]. RNA Biol, 2019, 16(3):354-361.
doi: 10.1080/15476286.2019.1574162 pmid: 30681395 |
[20] |
Wang JX, Lin J, Wang H, et al. Identification and characterization of circRNAs in Pyrus betulifolia Bunge under drought stress[J]. PLoS One, 2018, 13(7):e0200692.
doi: 10.1371/journal.pone.0200692 URL |
[21] |
Wang ZP, Liu YF, Li DW, et al. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion[J]. Front Plant Sci, 2017, 8:413.
doi: 10.3389/fpls.2017.00413 pmid: 28396678 |
[22] |
Tong W, Yu J, Hou Y, et al. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea(Camellia sinensis)[J]. Planta, 2018, 248(6):1417-1429.
doi: 10.1007/s00425-018-2983-x pmid: 30128600 |
[23] | Meng XW, Li X, Zhang PJ, et al. Circular RNA:an emerging key player in RNA world[J]. Brief Bioinform, 2017, 18(4):547-557. |
[24] |
Li SS, Liu YZ, Qiu GZ, et al. Emerging roles of circular RNAs in non-small cell lung cancer(Review)[J]. Oncol Rep, 2021, 45(4):17.
doi: 10.3892/or.2021.7968 URL |
[25] |
Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014, 15(6):9331-9342.
doi: 10.3390/ijms15069331 pmid: 24865493 |
[26] |
Lu TT, Cui LL, Zhou Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12):2076-2087.
doi: 10.1261/rna.052282.115 pmid: 26464523 |
[27] | Capelari RF, Fonseca GCD, Guzman F, et al. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries[J]. Plants(Basel), 2019, 8(9):302-314. |
[28] | 尹军良, 马东方, 刘乐承, 等. 环状RNA的生物特征及其在植物中的研究进展[J]. 西北植物学报, 2017, 37(12):2510-2518. |
Yin JL, Ma DF, Liu LC, et al. Biology features of circular RNAs and their research progress in plants[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(12):2510-2518. | |
[29] |
Chen L, Zhang P, Fan Y, et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J]. New Phytol, 2018, 217(3):1292-1306.
doi: 10.1111/nph.14901 pmid: 29155438 |
[30] |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.
doi: 10.1038/nature11928 URL |
[31] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.
doi: 10.1038/nature11993 URL |
[32] |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
doi: 10.1038/s41576-019-0158-7 pmid: 31395983 |
[33] |
Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016, 17(4):205-211.
doi: 10.1038/nrm.2015.32 URL |
[34] |
Rbbani G, Nedoluzhko A, Galindo-Villegas J, et al. Function of circular RNAs in fish and their potential application as biomarkers[J]. Int J Mol Sci, 2021, 22(13):7119.
doi: 10.3390/ijms22137119 URL |
[35] |
Zheng QP, Bao CY, Guo WJ, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7:11215.
doi: 10.1038/ncomms11215 pmid: 27050392 |
[36] |
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238:42-51.
doi: S0168-1656(16)31529-2 pmid: 27671698 |
[37] |
Zeng RF, Zhou JJ, Hu CG, et al. Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange(Poncirus trifoliata L. Raf. )[J]. Planta, 2018, 247(5):1191-1202.
doi: 10.1007/s00425-018-2857-2 URL |
[38] |
Zhou JP, Yuan MZ, Zhao YX, et al. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice[J]. Plant Biotechnol J, 2021, 19(6):1240-1252.
doi: 10.1111/pbi.13544 pmid: 33440058 |
[39] |
Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps[J]. Nature, 2009, 460(7254):479-486.
doi: 10.1038/nature08170 URL |
[40] |
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385):339-346.
doi: 10.1038/nature10887 URL |
[41] |
Zhang BH. microRNA:a new target for improving plant tolerance to abiotic stress[J]. J Exp Bot, 2015, 66(7):1749-1761.
doi: 10.1093/jxb/erv013 URL |
[42] |
Huang RR, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG[J]. Autophagy, 2017, 13(10):1722-1741.
doi: 10.1080/15548627.2017.1356975 pmid: 28786753 |
[43] |
Wang JY, Yang YW, Jin LM, et al. re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection[J]. BMC Plant Biol, 2018, 18(1):104.
doi: 10.1186/s12870-018-1332-3 pmid: 29866032 |
[44] |
Xiang LX, Cai CW, Cheng JR, et al. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq[J]. PeerJ, 2018, 6:e4500.
doi: 10.7717/peerj.4500 URL |
[45] |
Wang XS, Chang XC, Jing Y, et al. Identification and functional prediction of soybean circRNAs involved in low-temperature responses[J]. J Plant Physiol, 2020, 250:153188.
doi: 10.1016/j.jplph.2020.153188 URL |
[46] |
Liu HM, Yu WW, Wu JT, et al. Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability[J]. Planta, 2020, 251(2):47.
doi: 10.1007/s00425-020-03338-w pmid: 31925576 |
[47] |
Zhou R, Yu XQ, Ottosen CO, et al. High throughput sequencing of circRNAs in tomato leaves responding to multiple stresses of drought and heat[J]. Hortic Plant J, 2020, 6(1):34-38.
doi: 10.1016/j.hpj.2019.12.004 URL |
[48] |
Lv LL, Yu KY, Lü H, et al. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress[J]. PLoS One, 2020, 15(1):e0227243.
doi: 10.1371/journal.pone.0227243 URL |
[49] |
Dasmandal T, Rao AR, Sahu S. Identification and characterization of circular RNAs regulating genes responsible for drought stress tolerance in chickpea and soybean[J]. Indian J Genet Plant Breeding, 2020, 80(1). DOI:10.31742/IJGPB.80.1.1.
doi: 10.31742/IJGPB.80.1.1 |
[50] |
Yang XD, Liu YH, Zhang H, et al. Genome-wide identification of circular RNAs in response to low-temperature stress in tomato leaves[J]. Front Genet, 2020, 11:591806.
doi: 10.3389/fgene.2020.591806 URL |
[51] |
Zhou R, Yu XQ, Xu LP, et al. Genome-wide identification of circular RNAs in tomato seeds in response to high temperature[J]. Biol Plant, 2019, 63(1):97-103.
doi: 10.32615/bp.2019.012 URL |
[52] |
Zhang P, Fan Y, Sun XP, et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis[J]. Plant J, 2019, 98(4):697-713.
doi: 10.1111/tpj.14267 |
[53] |
Litholdo CG Jr, da Fonseca GC. Circular RNAs and plant stress responses[J]. Adv Exp Med Biol, 2018, 1087:345-353.
doi: 10.1007/978-981-13-1426-1_27 pmid: 30259379 |
[54] |
Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nat Plants, 2017, 3:17053.
doi: 10.1038/nplants.2017.53 pmid: 28418376 |
[55] |
Tan JJ, Zhou ZJ, Niu YJ, et al. Identification and functional characterization of tomato CircRNAs derived from genes involved in fruit pigment accumulation[J]. Sci Rep, 2017, 7(1):8594.
doi: 10.1038/s41598-017-08806-0 pmid: 28819222 |
[56] |
Wang HY, She GT, Zhou WB, et al. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus[J]. Endocr J, 2019, 66(5):431-441.
doi: 10.1507/endocrj.EJ18-0291 pmid: 30814439 |
[57] |
Zaiou M. circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J]. Cells, 2020, 9(3):659.
doi: 10.3390/cells9030659 URL |
[58] |
Lee WJ, Moon J, Jeon D, et al. Possible epigenetic regulatory effect of dysregulated circular RNAs in Alzheimer’s disease model[J]. Sci Rep, 2019, 9(1):11956.
doi: 10.1038/s41598-019-48471-z URL |
[59] |
Li YX, Lv ZY, Zhang J, et al. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer’s disease patients[J]. Metab Brain Dis, 2020, 35(1):201-213.
doi: 10.1007/s11011-019-00497-y URL |
[60] |
Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234(5):5588-5600.
doi: 10.1002/jcp.27384 pmid: 30341894 |
[61] | Hanan M, Simchovitz A, Yayon N, et al. A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress[J]. EMBO Mol Med, 2020, 12(9):e11942. |
[62] |
Feng Z, Zhang L, Wang S, et al. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease[J]. Biochem Biophys Res Commun, 2020, 522(2):388-394.
doi: 10.1016/j.bbrc.2019.11.102 URL |
[63] |
Song TF, Xu AL, Zhang ZF, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075[J]. J Cell Physiol, 2019, 234(8):14296-14305.
doi: 10.1002/jcp.28128 pmid: 30633364 |
[64] |
Chaichian S, Shafabakhsh R, Mirhashemi SM, et al. Circular RNAs:a novel biomarker for cervical cancer[J]. J Cell Physiol, 2020, 235(2):718-724.
doi: 10.1002/jcp.29009 pmid: 31240697 |
[65] |
Meng SJ, Zhou HC, Feng ZY, et al. CircRNA:functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer, 2017, 16(1):94.
doi: 10.1186/s12943-017-0663-2 URL |
[66] |
Pan B, Qin J, Liu XX, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer[J]. Front Genet, 2019, 10:1096.
doi: 10.3389/fgene.2019.01096 pmid: 31737058 |
[67] |
Liu F, Zhang H, Xie F, et al. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis[J]. Oncogene, 2020, 39(8):1696-1709.
doi: 10.1038/s41388-019-1092-z pmid: 31705065 |
[68] |
Li PF, Zhang ZX, Yuan X, et al. Hsa_circ_0001696 modulates cell proliferation and migration in colorectal cancer[J]. Oncol Lett, 2021, 21(2):154.
doi: 10.3892/ol.2020.12415 URL |
[69] |
Ma S, Kong S, Gu XL, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway[J]. Cancer Cell Int, 2021, 21(1):44.
doi: 10.1186/s12935-020-01701-1 pmid: 33430866 |
[70] | Luo Q, Liu J, Fu BQ, et al. Circular RNAs Hsa_circ_0002715 and Hsa_circ_0035197 in peripheral blood are novel potential biomarkers for new-onset rheumatoid arthritis[J]. Dis Markers, 2019, 2019:2073139. |
[71] |
Wang WW, Zhu D, Zhao ZH, et al. RNA sequencing reveals the expression profiles of circRNA and identifies a four-circRNA signature acts as a prognostic marker in esophageal squamous cell carcinoma[J]. Cancer Cell Int, 2021, 21(1):151.
doi: 10.1186/s12935-021-01852-9 pmid: 33663506 |
[72] |
Li W, Zhong CQ, Jiao J, et al. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis[J]. Int J Mol Sci, 2017, 18(3):597.
doi: 10.3390/ijms18030597 URL |
[73] |
Yang XS, Wu JR, Ziegler TE, et al. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize[J]. Plant Physiol, 2011, 157(4):1841-1852.
doi: 10.1104/pp.111.187898 pmid: 21980173 |
[74] |
Zhao W, Chu SS, Jiao YQ. Present scenario of circular RNAs(circRNAs)in plants[J]. Front Plant Sci, 2019, 10:379.
doi: 10.3389/fpls.2019.00379 pmid: 31001302 |
[75] |
Deng QL, Ramsköld D, Reinius B, et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells[J]. Science, 2014, 343(6167):193-196.
doi: 10.1126/science.1245316 pmid: 24408435 |
[76] |
Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue[J]. Nat Biotechnol, 2020, 38(5):586-599.
doi: 10.1038/s41587-020-0472-9 pmid: 32393914 |
[77] |
Lu HY, Giordano F, Ning ZM. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics, 2016, 14(5):265-279.
doi: 10.1016/j.gpb.2016.05.004 URL |
[78] |
Oikonomopoulos S, Wang YC, Djambazian H, et al. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations[J]. Sci Rep, 2016, 6:31602.
doi: 10.1038/srep31602 pmid: 27554526 |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[6] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[7] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[8] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[9] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[10] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[11] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[12] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[13] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[14] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[15] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||