生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 312-323.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0059
付伟杰1(), 邝杰华1, 罗君1, 黄建盛1, 陈有铭2, 陈刚1()
收稿日期:
2022-01-15
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
付伟杰,男,硕士研究生,研究方向:鱼类营养生理学与遗传育种;E-mail:基金资助:
FU Wei-jie1(), KUANG Jie-hua1, LUO Jun1, HUANG Jian-sheng1, CHEN You-ming2, CHEN Gang1()
Received:
2022-01-15
Published:
2022-12-26
Online:
2022-12-29
摘要:
Galectin-8是半乳糖凝集素家族的成员,对β-半乳糖苷类能够特异性识别,具有多种生物学功能。为研究杉虎斑(Epinephelus fuscoguttatus ♀× E. polyphekadion ♂)Galectin-8基因的序列特征、组织表达情况与饲料中添加阿魏酸(ferulic acid,FA)对其表达的影响,使用cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE)首次克隆得到了其全长cDNA序列。该序列长1 368 bp,其中5'UTR为16 bp,3'UTR为394 bp,开放阅读框(ORF)长960 bp,共编码319个氨基酸。该氨基酸序列在N端和C端上各具有一个糖识别结构域(carbohydrate binding domain,CRD),分别由136和133个氨基酸组成,由长为36个氨基酸的连接肽所连接,并包含两个保守基序H-NPR和WG-EE。同源性与系统发育进化树分析表明,杉虎斑Galectin-8与鞍带石斑鱼的一致性最高,为98.43%,并与其他硬骨鱼类聚为一支。RT-qPCR结果显示,Galectin-8在杉虎斑脾脏中表达量最高,其次是中肾、心脏、肠道、肝脏、头肾和鳃,而在脑、胃、皮肤和肌肉组织中微量表达。饲料中添加40-320 mg/kg 的FA时,肠道、肝脏、头肾和脾脏的Galectin-8表达量显著上调(P < 0.05),这表明FA可作为免疫刺激剂增强杉虎斑的先天性免疫。然而,杉虎斑Galectin-8的免疫功能尚不清,需要进一步的研究来阐明,以了解其在抵抗病原体入侵中的作用。
付伟杰, 邝杰华, 罗君, 黄建盛, 陈有铭, 陈刚. 杉虎斑Galectin-8基因克隆及其在不同阿魏酸水平饲料下的表达响应[J]. 生物技术通报, 2022, 38(12): 312-323.
FU Wei-jie, KUANG Jie-hua, LUO Jun, HUANG Jian-sheng, CHEN You-ming, CHEN Gang. Gene Cloning of Galectin-8 in Epinephelus fuscoguttatus♀×E. polyphekadion♂ and Its Expression Responses Under Different of Ferulic Acid Level[J]. Biotechnology Bulletin, 2022, 38(12): 312-323.
原料 Ingredient | 比例Percentage/% | 营养水平Nutrient level | 比例Percentage/% |
---|---|---|---|
鱼粉Fish powder | 45 | 水分Moisture | 9.2 |
酪蛋白Casein | 12 | 粗蛋白 Crude protein | 51.30 |
小麦谷朊粉 Vital wheat gluten | 8 | 粗脂肪 Crude lipid | 10.4 |
玉米蛋白粉 Corn gluten meal | 5 | 粗纤维 Crude fiber | 0.1 |
面粉Wheat flour | 17.22 | 粗灰分Ash | 9.6 |
鱼油Fish oil | 6 | ||
大豆卵磷脂Soybean lecithin | 2 | ||
维生素与矿物质预混料 Vitamin and mineral premixa | 2 | ||
氯化胆碱Choline chloride | 0.5 | ||
磷酸二氢钙 Ca(H2PO4)2 | 1.5 | ||
维生素C Vitamin C | 0.05 | ||
乙氧基喹啉Ethoxyquin | 0.03 | ||
微晶纤维素Microcrystalline cellulose | 0.4 | ||
诱食剂Attractant | 0.1 | ||
FA预混料FA premixb | 0.2 | ||
Total | 100 |
表1 试验饲料组成及营养水平
Table 1 Ingredient composition and nutrient levels of the experimental diets
原料 Ingredient | 比例Percentage/% | 营养水平Nutrient level | 比例Percentage/% |
---|---|---|---|
鱼粉Fish powder | 45 | 水分Moisture | 9.2 |
酪蛋白Casein | 12 | 粗蛋白 Crude protein | 51.30 |
小麦谷朊粉 Vital wheat gluten | 8 | 粗脂肪 Crude lipid | 10.4 |
玉米蛋白粉 Corn gluten meal | 5 | 粗纤维 Crude fiber | 0.1 |
面粉Wheat flour | 17.22 | 粗灰分Ash | 9.6 |
鱼油Fish oil | 6 | ||
大豆卵磷脂Soybean lecithin | 2 | ||
维生素与矿物质预混料 Vitamin and mineral premixa | 2 | ||
氯化胆碱Choline chloride | 0.5 | ||
磷酸二氢钙 Ca(H2PO4)2 | 1.5 | ||
维生素C Vitamin C | 0.05 | ||
乙氧基喹啉Ethoxyquin | 0.03 | ||
微晶纤维素Microcrystalline cellulose | 0.4 | ||
诱食剂Attractant | 0.1 | ||
FA预混料FA premixb | 0.2 | ||
Total | 100 |
引物 Primer | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
Gal-8-F | TGATGCCGACAGGTTCCAGATAGA | 中间片段验证 Middle sequence verification |
Gal-8-R | GATGTTGACGCCCAGCAGTGT | |
UPM-long | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT | RACE通用引物 Universal primers for RACE |
UPM-short | CTAATACGACTCACTATAGGGC | |
Gal-8-5'GSP | TGCCCTCTGCGTTGGGATTG | 5'端序列克隆 5' RACE |
Gal-8-5'NGSP | GGAGGATGCCGACAGCCTGAATA | |
Gal-8-3'GSP | GAGGTGAACTGGCTGGACTGAG | 3'端序列克隆 3' RACE |
Gal-8-3'NGSP | TCAGGGTTGCTGTCAATGGGCTC | |
Gal-8-RT-F | AACACAGAGTGGACCTGGACCG | 实时荧光定量PCR Quantitative real-time PCR |
Gal-8-RT-R | CCAACACTCAGTCCTTTAGCCA | |
β-actin-F | CTCTCGGCTGTGGTGGTGAA | 内参基因 Housekeeping gene |
β-actin-R | CGTGATGGACTCTGGTGATGGT |
表2 本研究所用引物
Table 2 Primers used in this study
引物 Primer | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
Gal-8-F | TGATGCCGACAGGTTCCAGATAGA | 中间片段验证 Middle sequence verification |
Gal-8-R | GATGTTGACGCCCAGCAGTGT | |
UPM-long | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT | RACE通用引物 Universal primers for RACE |
UPM-short | CTAATACGACTCACTATAGGGC | |
Gal-8-5'GSP | TGCCCTCTGCGTTGGGATTG | 5'端序列克隆 5' RACE |
Gal-8-5'NGSP | GGAGGATGCCGACAGCCTGAATA | |
Gal-8-3'GSP | GAGGTGAACTGGCTGGACTGAG | 3'端序列克隆 3' RACE |
Gal-8-3'NGSP | TCAGGGTTGCTGTCAATGGGCTC | |
Gal-8-RT-F | AACACAGAGTGGACCTGGACCG | 实时荧光定量PCR Quantitative real-time PCR |
Gal-8-RT-R | CCAACACTCAGTCCTTTAGCCA | |
β-actin-F | CTCTCGGCTGTGGTGGTGAA | 内参基因 Housekeeping gene |
β-actin-R | CGTGATGGACTCTGGTGATGGT |
图1 杉虎斑Galectin-8的全长cDNA核苷酸序列和推导的氨基酸序列 下划线表示起始密码子;星号表示终止密码子;灰色阴影的氨基酸序列代表2个CRD结构域;黑色方框的氨基酸序列为CRD中的保守基序HXNPR与WGXEE(X表示任意氨基酸);三角形代表预测的N-糖基化位点:圆表示预测的磷酸化位点;加粗斜体代表加尾信号
Fig. 1 Full length cDNA nucleotide and deduced amino acid sequences of Galectin-8 in hybrid grouper The initiation codon(ATG)is underlined. The stop codon is indicated by asterisks. The carbohydrate recognition domain is highlighted by shading. The conserved motifs in the CRD domain are boxed in black color. The triangle indicates the putative site for N-linked glycosylation. The circle indicates the putative site for phosphorylation. The polyadenylation signal sequence is shown in bold italics
图3 杉虎斑与其他物种 Galectin-8氨基酸序列的多重比对 N端与C端的CRD分别用蓝色和绿色箭头线显示;红色方框代表CRDs中的保守基序;黑色方框表示连接肽
Fig. 3 Multiple sequence alignment of Galectin-8 amino acid sequences between hybrid grouper and other species The N-terminal and C- terminal CRDs are represented by blue and green color arrow headed lines,respectively. Conserved motifs in the CRD domain are boxed in red color;and the hinge sequences(linker peptide)of each ortholog are boxed in black color
物种Species | 氨基酸Amino acids | 一致性Identity/% | GenBank登录号GenBank accession number |
---|---|---|---|
杉虎斑 Epinephelus fuscoguttatus♀ × E.polyphekadion♂ | 319 | — | OL826837 |
鞍带石斑鱼 E. lanceolatus | 319 | 98.43 | XP_033503883.1 |
许氏平鲉 Sebastes schlegelii | 322 | 82.61 | QJD13864.1 |
条石鲷 Oplegnathus fasciatus | 313 | 79.31 | ANN46245.1 |
蓝鳍金枪鱼 Thunnus maccoyii | 313 | 75.94 | XP_042246845.1 |
罗非鱼 Oreochromis niloticus | 321 | 72.05 | XP_003446682.2 |
?鱼 Echeneis naucrates | 314 | 70.53 | XP_029352421.1 |
大西洋鲑 Salmo salar | 296 | 63.84 | NP_001133778.1 |
香鱼 Plecoglossus altivelis | 297 | 52.98 | QNB48521.1 |
黄姑鱼 Nibea albiflora | 313 | 47.48 | KAG8013601.1 |
智人 Homo sapiens | 317 | 54.09 | AAF19370.1 |
北极熊Ursus maritimus | 316 | 52.85 | XP_008687860.1 |
牛 Bos taurus | 357 | 48.44 | NP_001039419.1 |
麻雀 Passer montanus | 341 | 53.94 | XP_039562765.1 |
原鸡 Gallus gallus | 315 | 53.73 | NP_001010843.1 |
白鹭 Egretta garzetta | 317 | 52.85 | KFP20361.1 |
虎斑响尾蛇 Crotalus tigris | 297 | 49.36 | XP_039208905.1 |
眼镜王蛇 Ophiophagus hannah | 294 | 48.54 | ETE69412.1 |
热带爪蟾 Xenopus tropicalis | 315 | 49.69 | NP_001135558.1 |
中华大蟾蜍 Bufo gargarizans | 314 | 48.59 | XP_044144965.1 |
表3 杉虎斑Galectin-8氨基酸序列多重比对与构建系统进化树所用到的氨基酸序列
Table 3 Amino acid sequences used for multiple sequence alignment and phylogenetic tree construction for Galectin-8 from hybrid grouper
物种Species | 氨基酸Amino acids | 一致性Identity/% | GenBank登录号GenBank accession number |
---|---|---|---|
杉虎斑 Epinephelus fuscoguttatus♀ × E.polyphekadion♂ | 319 | — | OL826837 |
鞍带石斑鱼 E. lanceolatus | 319 | 98.43 | XP_033503883.1 |
许氏平鲉 Sebastes schlegelii | 322 | 82.61 | QJD13864.1 |
条石鲷 Oplegnathus fasciatus | 313 | 79.31 | ANN46245.1 |
蓝鳍金枪鱼 Thunnus maccoyii | 313 | 75.94 | XP_042246845.1 |
罗非鱼 Oreochromis niloticus | 321 | 72.05 | XP_003446682.2 |
?鱼 Echeneis naucrates | 314 | 70.53 | XP_029352421.1 |
大西洋鲑 Salmo salar | 296 | 63.84 | NP_001133778.1 |
香鱼 Plecoglossus altivelis | 297 | 52.98 | QNB48521.1 |
黄姑鱼 Nibea albiflora | 313 | 47.48 | KAG8013601.1 |
智人 Homo sapiens | 317 | 54.09 | AAF19370.1 |
北极熊Ursus maritimus | 316 | 52.85 | XP_008687860.1 |
牛 Bos taurus | 357 | 48.44 | NP_001039419.1 |
麻雀 Passer montanus | 341 | 53.94 | XP_039562765.1 |
原鸡 Gallus gallus | 315 | 53.73 | NP_001010843.1 |
白鹭 Egretta garzetta | 317 | 52.85 | KFP20361.1 |
虎斑响尾蛇 Crotalus tigris | 297 | 49.36 | XP_039208905.1 |
眼镜王蛇 Ophiophagus hannah | 294 | 48.54 | ETE69412.1 |
热带爪蟾 Xenopus tropicalis | 315 | 49.69 | NP_001135558.1 |
中华大蟾蜍 Bufo gargarizans | 314 | 48.59 | XP_044144965.1 |
图4 邻接法构建Galectin-8基因氨基酸序列的系统发育进化树 杉虎斑在进化树上用“●”标示出来,距离标尺为0.1
Fig. 4 Phylogenetic tree of the amino sequences of Galectin-8 genes constructed by neighbour-joining method Hybrid grouper is marked with ‘●’ on the phylogenetic tree. The scale bar of 0.1 indicates genetic distance.
图5 杉虎斑Galectin-8在各组织的相对表达量 数据以平均值±标准差表示,不同的小写字母代表差异显著(P < 0.05);下同
Fig. 5 Relative expressions of Galectin-8 in the different tissues from hybrid grouper Values are displayed as mean ± SD;values that do not share the common lowercase letters differ significantly(P < 0.05);the same below
图6 饲料阿魏酸不同添加水平对杉虎斑肝脏、肠道、头肾和脾脏的Galectin-8基因表达量的影响
Fig. 6 Effects of dietary supplementation of ferulic acid(FA)on the relative mRNA expressions of Galectin-8 in the liver,intestine,head kidney and spleen of hybrid grouper
[1] | Ogawa T, Watanabe M, et al. Diversified carbohydrate-binding lectins from marine resources[J]. J Amino Acids, 2011, 2011:838914. |
[2] |
da Rosa MM, de Aguiar Ferreira M, de Oliveira Lima CA, et al. Alzheimer’s disease:is there a role for galectins?[J]. Eur J Pharmacol, 2021, 909:174437.
doi: 10.1016/j.ejphar.2021.174437 URL |
[3] |
Hirabayashi J, Kasai KI. The family of metazoan metal-independent β-galactoside-binding lectins:structure, function and molecular evolution[J]. Glycobiology, 1993, 3(4):297-304.
pmid: 8400545 |
[4] |
Leffler H, Carlsson S, Hedlund M, et al. Introduction to galectins[J]. Glycoconj J, 2002, 19(7/8/9):433-440.
doi: 10.1023/B:GLYC.0000014072.34840.04 URL |
[5] |
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2021, 20(7):102847.
doi: 10.1016/j.autrev.2021.102847 URL |
[6] |
Sethi A, Sanam S, Alvala M. Non-carbohydrate strategies to inhibit lectin proteins with special emphasis on galectins[J]. Eur J Med Chem, 2021, 222:113561.
doi: 10.1016/j.ejmech.2021.113561 URL |
[7] |
Haudek KC, Patterson RJ, Wang JL. SR proteins and galectins:what’s in a name?[J]. Glycobiology, 2010, 20(10):1199-1207.
doi: 10.1093/glycob/cwq097 pmid: 20574110 |
[8] |
Rabinovich GA, Gruppi A. Galectins as immunoregulators during infectious processes:from microbial invasion to the resolution of the disease[J]. Parasite Immunol, 2005, 27(4):103-114.
pmid: 15910418 |
[9] |
Yang RY, Rabinovich GA, Liu FT. Galectins:structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10:e17.
doi: 10.1017/S1462399408000719 URL |
[10] |
Wang L, Zhang J, et al. Molecular characterization and biological function of a tandem-repeat galectin-9 in Qihe crucian carp Caras-sius auratus[J]. Fish Shellfish Immunol, 2020, 103:366-376.
doi: 10.1016/j.fsi.2020.04.054 URL |
[11] |
Zick Y, Eisenstein M, Goren RA, et al. Role of galectin-8 as a modulator of cell adhesion and cell growth[J]. Glycoconj J, 2002, 19(7/8/9):517-526.
doi: 10.1023/B:GLYC.0000014081.55445.af URL |
[12] |
Thurston TLM, Wandel MP, von Muhlinen N, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion[J]. Nature, 2012, 482(7385):414-418.
doi: 10.1038/nature10744 URL |
[13] |
Zhang TF, Jiang S, Sun L. A fish galectin-8 possesses direct bactericidal activity[J]. Int J Mol Sci, 2020, 22(1):376.
doi: 10.3390/ijms22010376 URL |
[14] | Tsai CM, Lin KI. Examination of the role of galectins in plasma cell differentiation[J]. Methods Mol Biol, 2015, 1207:153-167. |
[15] |
Tsai CM, Guan CH, Hsieh HW, et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation[J]. J Immunol, 2011, 187(4):1643-1652.
doi: 10.4049/jimmunol.1100297 URL |
[16] |
Sampson JF, Suryawanshi A, Chen WS, et al. Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFβ signaling[J]. Immunol Cell Biol, 2016, 94(2):220.
doi: 10.1038/icb.2016.8 pmid: 26857020 |
[17] |
Unajak S, Pholmanee N, Songtawee N, et al. Molecular characterization of Galectin-8 from Nile tilapia(Oreochromis niloticus Linn. )and its response to bacterial infection[J]. Mol Immunol, 2015, 68(< W>2 Pt C):585-596.
doi: 10.1016/j.molimm.2015.09.012 URL |
[18] |
Niu JZ, Huang Y, Liu XC, et al. Fish Galectin8-like exerts positive regulation on immune response against bacterial infection[J]. Front Immunol, 2020, 11:1140.
doi: 10.3389/fimmu.2020.01140 pmid: 32676073 |
[19] | 梁亚芳, 史雨红, 苗亮, 等. 大弹涂鱼(Boleophthalmus pectinirostris)gal-8L基因序列及其细菌凝集活性的鉴定[J]. 海洋与湖沼, 2018, 49(2):413-421. |
Liang YF, Shi YH, Miao L, et al. Gal-8l of mudskipper Boleophthalmus pectinirostris:characterization of the sequence and bacterial agglutination activity[J]. Oceanol Limnol Sin, 2018, 49(2):413-421. | |
[20] |
Madusanka RK, Priyathilaka TT, Janson ND, et al. Molecular, transcriptional and functional delineation of Galectin-8 from black rockfish(Sebastes schlegelii)and its potential immunological role[J]. Fish Shellfish Immunol, 2019, 93:449-462.
doi: 10.1016/j.fsi.2019.07.072 URL |
[21] |
Dong ZX, Li YR, Liu XF, et al. Molecular characterization, expression analysis and immune effect of Galectin-8 from Japanese flounder(Paralichthys olivaceus)[J]. Fish Shellfish Immunol, 2021, 111:59-68.
doi: 10.1016/j.fsi.2021.01.012 URL |
[22] |
Liang ZG, Li L, et al. Expression and antibacterial analysis of galectin-8 and-9 genes in mandarin fish, Siniperca chuatsi[J]. Fish Shellfish Immunol, 2020, 107(Pt B):463-468.
doi: 10.1016/j.fsi.2020.10.028 URL |
[23] | 陈刚, 黄建盛, 张健东, 等. 杂交石斑鱼(褐点石斑鱼♀×清水石斑鱼♂)仔、稚鱼的摄食与生长特性[J]. 水产学报, 2018, 42(11):1766-1777. |
Chen G, Huang JS, Zhang JD, et al. Feeding habits and growth characteristics of larvae and juvenile hybrid grouper(Epinephelus fuscoguttatus♀ × E. polyphekadion♂)[J]. J Fish China, 2018, 42(11):1766-1777. | |
[24] |
Fu WJ, Amenyogbe E, Yang EJ, et al. Effects of dietary supplementation of ferulic acid on growth performance, antioxidant ability, non-specific immunity, hepatic morphology and genes expression related to growth and immunity in juvenile hybrid grouper(Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂)[J]. Aquaculture, 2022, 552:737988.
doi: 10.1016/j.aquaculture.2022.737988 URL |
[25] | FAO. Fishery and Aquaculture Statistics.Global aquaculture production 1950-2019. In:FAO Fisheries Division. Rome. Updated 2021. |
[26] |
Ren ZL, Wang SF, Cai Y, et al. Effects of dietary mannan oligosaccharide supplementation on growth performance, antioxidant capacity, non-specific immunity and immune-related gene expression of juvenile hybrid grouper(Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀)[J]. Aquaculture, 2020, 523:735195.
doi: 10.1016/j.aquaculture.2020.735195 URL |
[27] |
Raissy M, Ghafarifarsani H, Hoseinifar SH, et al. The effect of dietary combined herbs extracts(oak acorn, coriander, and common mallow)on growth, digestive enzymes, antioxidant and immune response, and resistance against Aeromonas hydrophila infection in common carp, Cyprinus carpio[J]. Aquaculture, 2022, 546:737287.
doi: 10.1016/j.aquaculture.2021.737287 URL |
[28] |
Valadez-García KM, Avendaño-Reyes L, Meza-Herrera CA, et al. Ferulic acid in animal feeding:mechanisms of action, productive benefits, and future perspectives in meat production[J]. Food Biosci, 2021, 43:101247.
doi: 10.1016/j.fbio.2021.101247 URL |
[29] |
Palanisamy R, Bhatt P, Kumaresan V, et al. Innate and adaptive immune molecules of striped murrel Channa striatus[J]. Rev Aquac, 2018, 10(2):296-319.
doi: 10.1111/raq.12161 URL |
[30] |
Vallejos-Vidal E, et al. The response of fish to immunostimulant diets[J]. Fish Shellfish Immunol, 2016, 56:34-69.
doi: 10.1016/j.fsi.2016.06.028 URL |
[31] |
Vasta GR, Nita-Lazar M, Giomarelli B, et al. Structural and functional diversity of the lectin repertoire in teleost fish:relevance to innate and adaptive immunity[J]. Dev Comp Immunol, 2011, 35(12):1388-1399.
doi: 10.1016/j.dci.2011.08.011 URL |
[32] |
Sánchez-Salgado JL, et al. Participation of lectins in crustacean immune system[J]. Aquac Res, 2017, 48(8):4001-4011.
doi: 10.1111/are.13394 URL |
[33] |
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion[J]. J Cell Sci, 2012, 125:5251-5255.
doi: 10.1242/jcs.103630 pmid: 23377655 |
[34] |
Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins[J]. Semin Cell Dev Biol, 2018, 83:42-50.
doi: S1084-9521(17)30582-7 pmid: 29501720 |
[35] |
Hadari YR, Paz K, et al. Galectin-8. A new rat lectin, related to galectin-4[J]. J Biol Chem, 1995, 270(7):3447-3453.
doi: 10.1074/jbc.270.7.3447 pmid: 7852431 |
[36] | Tort L, Balasch J, MacKenzie S. Fish Immune System. A crossroads between innate and adaptive responses[J]. Inmunologia, 2003, 22(3):277-286. |
[37] |
Carbone D, Faggio C. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax[J]. Fish Shellfish Immunol, 2016, 54:172-178.
doi: 10.1016/j.fsi.2016.04.011 URL |
[38] |
Causey DR, Pohl MAN, Stead DA, et al. High-throughput proteomic profiling of the fish liver following bacterial infection[J]. BMC Genomics, 2018, 19(1):719.
doi: 10.1186/s12864-018-5092-0 pmid: 30285610 |
[39] |
Rivest S. Regulation of innate immune responses in the brain[J]. Nat Rev Immunol, 2009, 9(6):429-439.
doi: 10.1038/nri2565 pmid: 19461673 |
[40] |
Anderson DP. Immunostimulants, adjuvants, and vaccine carriers in fish:applications to aquaculture[J]. Annu Rev Fish Dis, 1992, 2:281-307.
doi: 10.1016/0959-8030(92)90067-8 URL |
[41] |
Dawood MAO, Koshio S, Esteban MÁ. Beneficial roles of feed additives as immunostimulants in aquaculture:a review[J]. Rev Aquac, 2018, 10(4):950-974.
doi: 10.1111/raq.12209 URL |
[42] |
Kilani-Jaziri S, Mokdad-Bzeouich I, et al. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids:a structure-activity relationship study[J]. Drug Chem Toxicol, 2017, 40(4):416-424.
doi: 10.1080/01480545.2016.1252919 pmid: 27855523 |
[43] |
Dawood MAO, Metwally AES, et al. The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia(Oreochromis niloticus)exposed to heat stress[J]. Aquaculture, 2020, 525:735320.
doi: 10.1016/j.aquaculture.2020.735320 URL |
[44] |
Pérez-Sánchez J, Benedito-Palos L, Estensoro I, et al. Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream(Sparus aurata L.)[J]. Fish Shellfish Immunol, 2015, 44(1):117-128.
doi: 10.1016/j.fsi.2015.01.039 URL |
[45] |
Guardiola FA, Porcino C, Cerezuela R, et al. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass(Dicentrarchus labrax)[J]. Fish Shellfish Immunol, 2016, 52:298-308.
doi: 10.1016/j.fsi.2016.03.152 URL |
[46] | Giri SS, Jun JW, Sukumaran V, et al. Dietary administration of banana(Musa acuminata)peel flour affects the growth, antioxidant status, cytokine responses, and disease susceptibility of rohu, Labeo rohita[J]. J Immunol Res, 2016, 2016:4086591. |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[9] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[10] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[11] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[12] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[13] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||