生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 95-104.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0266
张功友1,2,3,5(), 王一涵1,3, 郭敏1,3, 张婷婷1,3,4, 王兵1,3,4, 刘红美1,3,4()
收稿日期:
2021-03-08
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
张功友,男,硕士,研究方向:植物真菌学;E-mail: 基金资助:
ZHANG Gong-you1,2,3,5(), WANG Yi-han1,3, GUO Min1,3, ZHANG Ting-ting1,3,4, WANG Bing1,3,4, LIU Hong-mei1,3,4()
Received:
2021-03-08
Published:
2022-02-26
Online:
2022-03-09
摘要:
从重楼根茎中分离、鉴定具有产纤维素酶活性的内生真菌。采用表面消毒法从重楼块茎中分离内生真菌;用纤维素酶活性CMC平板检测分离菌株的产纤维素酶活性;对高产菌株进行形态学观察和分子生物学测序鉴定;探究影响纤维素酶活力的因素;利用平板法检测该株菌产其他胞外水解酶的活性。从3个来源的重楼中分离出41株内生真菌,通过平板检测发现AS-5、AS-7、AS-9和AS-18菌株能产生纤维素酶,其中AS-9菌株活性最强;通过形态学观察和ITS、LSU序列分析将AS-9菌株鉴定为Setophoma terrestris;该菌在pH值为7.0和温度为28℃时表现出最大纤维素酶活性,紫外线照射对产纤维素酶活性无明显作用;检测发现AS-9菌株同时具有产酪蛋白酶、脂肪酶、天冬酰胺酶、谷氨酰胺酶和脲酶活性。首次在重楼中发现内生真菌Setophoma terrestris,且具有较好的产纤维素酶能力,值得深入研究。
张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104.
ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis[J]. Biotechnology Bulletin, 2022, 38(2): 95-104.
位置Location | 菌株编号Strain No. | 来源Source | 数量Number |
---|---|---|---|
105°58'13.22″E 26°02'22.85″N | AS-1,AS-2,AS-3,AS-4,AS-5,AS-7,AS-8,AS-9,AS-12,AS-13,AS-14,AS-15,AS-16,AS-17,AS-18,AS-19,AS-20 | 块茎Tuber | 17 |
107°01'10.49″E 28°14'28.36″N | ZY-1,ZY-2,ZY-5,ZY-7,ZY-16 | 块茎Tuber | 5 |
105°05'37.79″E 24°29'27.58″N | GX-E,GX-F,GX-G,GX-H,GX-I,GX-J,GX-K,GX-L,GX-M,GX-N,GX-O,GX-P,GX-Q,GX-R,GX-S,GX-T,GX-U,GX-V,GX-W | 块茎Tuber | 19 |
表1 重楼内生真菌的分离
Table 1 Isolation of fungal endophytes from P. polyphylla var. yunnanensis
位置Location | 菌株编号Strain No. | 来源Source | 数量Number |
---|---|---|---|
105°58'13.22″E 26°02'22.85″N | AS-1,AS-2,AS-3,AS-4,AS-5,AS-7,AS-8,AS-9,AS-12,AS-13,AS-14,AS-15,AS-16,AS-17,AS-18,AS-19,AS-20 | 块茎Tuber | 17 |
107°01'10.49″E 28°14'28.36″N | ZY-1,ZY-2,ZY-5,ZY-7,ZY-16 | 块茎Tuber | 5 |
105°05'37.79″E 24°29'27.58″N | GX-E,GX-F,GX-G,GX-H,GX-I,GX-J,GX-K,GX-L,GX-M,GX-N,GX-O,GX-P,GX-Q,GX-R,GX-S,GX-T,GX-U,GX-V,GX-W | 块茎Tuber | 19 |
菌株编号 Strain No. | 透明圈直径Transparent circle diameter D/cm | 菌落直径 Colony diameter d/cm | D/d |
---|---|---|---|
Penicillium | 1.8 | 1.2 | 1.64 |
AS-5 | 1.5 | 0.7 | 2.14 |
AS-7 | 0.8 | 0.55 | 1.45 |
AS-9 | 1.7 | 0.75 | 2.27 |
AS-18 | 1.5 | 1.0 | 1.5 |
表2 产纤维素酶内生真菌的透明圈大小
Table 2 Size of transparent circle produced by cellulase-producing endophytic fungus
菌株编号 Strain No. | 透明圈直径Transparent circle diameter D/cm | 菌落直径 Colony diameter d/cm | D/d |
---|---|---|---|
Penicillium | 1.8 | 1.2 | 1.64 |
AS-5 | 1.5 | 0.7 | 2.14 |
AS-7 | 0.8 | 0.55 | 1.45 |
AS-9 | 1.7 | 0.75 | 2.27 |
AS-18 | 1.5 | 1.0 | 1.5 |
图2 AS-9菌株形态 A:菌落正面;B:菌落背面;C-F:光学显微镜观察菌丝形态;G:分生孢子;H,I:扫描电镜观察菌丝形态
Fig. 2 Morphology of AS-9 strain A:The colony surface. B:The colony dorsal surface. C-F:Fungal hyphae were observed using the optical microscope. G:Conidia. H,I:Fungal hyphae were observed using scanning electron microscopy
图4 基于ITS和LSU基因序列的系统进化树 A:基于ITS序列的系统进化树;B:基于LSU序列的系统进化树
Fig. 4 Phylogenetic trees based on the ITS and LSU gene sequences A:Phylogenetic tree based on the ITS sequence. B:Phylogenetic tree based on the LSU sequence
图5 不同pH、温度和紫外线对纤维素酶活性的影响 A:pH;B:温度;C:紫外照射
Fig. 5 Effects of different pH,temperature and UV on cellulase activity A:pH. B:Temperature. C:UV irradiation
培养条件Culture condition | 透明圈直径 Transparent circle diameter D/cm | 菌落直径 Colony diameter d/cm | D/d |
---|---|---|---|
pH4.0 | 1.5 | 0.95 | 1.58 |
pH5.0 | 1.5 | 1.05 | 1.43 |
pH6.0 | 1.4 | 0.85 | 1.65 |
pH7.0 | 1.9 | 0.75 | 2.53 |
pH8.0 | 1.3 | 1.05 | 1.24 |
25℃ | 1.7 | 0.75 | 2.27 |
28℃ | 2.0 | 0.8 | 2.5 |
32℃ | 1.3 | 0.55 | 2.36 |
28℃(无紫外) | 1.7 | 0.65 | 2.61 |
28℃(紫外) | 1.25 | 0.45 | 2.78 |
表3 AS-9菌株不同培养条件产纤维素酶的透明圈大小
Table 3 Size of transparent circle produced by AS-9 strain under different culture conditions
培养条件Culture condition | 透明圈直径 Transparent circle diameter D/cm | 菌落直径 Colony diameter d/cm | D/d |
---|---|---|---|
pH4.0 | 1.5 | 0.95 | 1.58 |
pH5.0 | 1.5 | 1.05 | 1.43 |
pH6.0 | 1.4 | 0.85 | 1.65 |
pH7.0 | 1.9 | 0.75 | 2.53 |
pH8.0 | 1.3 | 1.05 | 1.24 |
25℃ | 1.7 | 0.75 | 2.27 |
28℃ | 2.0 | 0.8 | 2.5 |
32℃ | 1.3 | 0.55 | 2.36 |
28℃(无紫外) | 1.7 | 0.65 | 2.61 |
28℃(紫外) | 1.25 | 0.45 | 2.78 |
图7 胞外水解酶活性检测 A:酪蛋白酶;B:脂肪酶;C:L-天冬酰胺酶;D:谷氨酰胺酶;E:脲酶;F:明胶酶;G:植酸酶;H:果胶酶;I:淀粉酶;J:木质素酶
Fig. 7 Detection of extracellular hydrolytic enzyme activity A:Caseinase. B:Lipase. C:L-asparaginase. D:Glutaminase. E:Urease. F:Gelatinase. G:Phytase. H:Pectinase. I:Amylase. J:Ligninase
[1] | 郭晓华, 王仕宝. 中药材重楼研究进展[J]. 陕西农业科学, 2019, 65(5):94-98. |
Guo XH, Wang SB. Research progress of Chinese herbal medicine Polyphylla[J]. Shaanxi Journal of Agricultural Sciences, 65(5):94-98. | |
[2] |
Ling LZ, Zhang SD, Zhao F, et al. Transcriptome-wide identification and prediction of miRNAs and their targets in paris Polyphylla var. Yunnanensis by high-throughput sequencing analysis[J]. Int J Mol Sci, 2017, 18(1):219.
doi: 10.3390/ijms18010219 URL |
[3] | 代娇, 宋秋玲, 田甜. 关于滇重楼内生真菌抗菌活性的筛选和菌株鉴定研究[J]. 神州, 2019(1):227. |
Dai J, Song QL, Tian T. Study on the screening and strain identification of endophytic fungi from Paris polyphylla Smith var. yunnanensis[J]. Sheng Zhou, 2019(1):227. | |
[4] | 张晨阳, 梁宗锁, 李先恩, 等. 七叶一枝花不同器官的成分含量变化规律[J]. 浙江理工大学学报:自然科学版, 2020, 43(6):831-839. |
Zhang CY, Liang ZS, Li XE, et al. Change law of component content of different organs in Paris Polyphylla[J]. J Zhejiang Sci Tech Univ:Nat Sci Ed, 2020, 43(6):831-839. | |
[5] | 杨松岩. 纤维素酶在中药提取中的应用[J]. 世界中医药, 2015, 10(S1):474-475. |
Yang SY. Application of cellulase in extraction of traditional chinese medicine[J]. World Journal of Traditional Chinese Medicine, 2015, 10(S1):474-475. | |
[6] |
Costa OYA, de Hollander M, Pijl A, et al. Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer[J]. Microbiome, 2020, 8(1):76.
doi: 10.1186/s40168-020-00836-7 URL |
[7] |
Li X, Han C, Li W, et al. Insights into the cellulose degradation mechanism of the thermophilic fungus Chaetomium thermophilum based on integrated functional omics[J]. Biotechnol Biofuels, 2020, 13:143.
doi: 10.1186/s13068-020-01783-z URL |
[8] | 杨吉霞, 蔡俊鹏, 祝玲. 纤维素酶在中药成分提取中的应用[J]. 中药材, 2005, 28(1):64-67. |
Yang JX, Cai JP, Zhu L. Application of ccellulase in extraction of traditional Chinese medicine[J]. J Chin Med Mater, 2005, 28(1):64-67. | |
[9] |
Li F, Dong JY, Lv X, et al. Recombinant expression and characterization of two glycoside hydrolases from extreme alklinphilic bacterium Cellulomonas bogoriensis 69B4^T[J]. AMB Express, 2020, 10(1):1-10.
doi: 10.1186/s13568-019-0926-y URL |
[10] | 王欣宇. 特异性产纤维素酶东北红豆杉内生真菌的筛选及初步应用[D]. 哈尔滨:东北林业大学, 2020. |
Wang XY. Screening of endophytic fungi of Taxus cuspidata s. et z. for specific production of cellulase and its preliminary application[D]. Harbin:Northeast Forestry University, 2020. | |
[11] |
Ma LL, Zhao YC, Meng LM, et al. Isolation of thermostable lignocellulosic bacteria from chicken manure compost and a M42 family endocellulase cloning from Geobacillus thermodenitrificans Y7[J]. Front Microbiol, 2020, 11:281.
doi: 10.3389/fmicb.2020.00281 URL |
[12] |
Mentges M, Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum[J]. Sci Rep, 2015, 5:14980.
doi: 10.1038/srep14980 URL |
[13] | 林英, 秦萍, 杜志强, 等. 产纤维素酶绿色木霉F-UV264产酶条件优化[J]. 安徽农业科学, 2006, 34(11):2312-2314. |
Lin Y, Qin P, Du ZQ, et al. Study on optimization producing cellulase conditions of Trichoderma[J]. J Anhui Agric Sci, 2006, 34(11):2312-2314. | |
[14] |
Li SJ, Zhang X, Wang XH, et al. Novel natural compounds from endophytic fungi with anticancer activity[J]. Eur J Med Chem, 2018, 156:316-343.
doi: 10.1016/j.ejmech.2018.07.015 URL |
[15] |
Teimoori-Boghsani Y, Ganjeali A, Cernava T, et al. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites[J]. Front Microbiol, 2019, 10:3013.
doi: 10.3389/fmicb.2019.03013 pmid: 32010087 |
[16] |
Zhao J, Shan T, Mou Y, et al. Plant-derived bioactive compounds produced by endophytic fungi[J]. Mini Rev Med Chem, 2011, 11(2):159-168.
pmid: 21222580 |
[17] | Liu JJ, Liu G. Analysis of secondary metabolites from plant endophytic fungi[J]. Methods Mol Biol Clifton N J, 2018, 1848:25-38. |
[18] | Tyagi B, Tewari S, Dubey A. Biochemical characterization of fungus isolated during In vitro propagation of Bambusa balcooa[J]. Pharmacogn Mag, 2018, 13(suppl 4):S775-S779. |
[19] | 韩慧玲. 植物内生真菌来源纤溶酶的筛选及其酶学特性的探究[D]. 长春:吉林大学, 2019. |
Han HL. Screening of fibrinolytic enzyme from plant endophytic fungi and study on its enzymatic characteristics[D]. Changchun:Jilin University, 2019. | |
[20] | Wang Q, Shen SK, Zhang AL, et al. Isolation and diversity analyses of endophytic fungi from Paris Polyphylla var. Yunnanensis[J]. China J Chin Mater Med, 2013, 38(22):3838-3844. |
[21] |
Chung PC, Wu HY, Wang YW, et al. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov[J]. Sci Rep, 2020, 10:14664.
doi: 10.1038/s41598-020-70878-2 URL |
[22] |
Lenz AR, Galán-Vásquez E, Balbinot E, et al. Gene regulatory networks of Penicillium echinulatum 2HH and Penicillium oxalicum 114-2 inferred by a computational biology approach[J]. Front Microbiol, 2020, 11:588263.
doi: 10.3389/fmicb.2020.588263 URL |
[23] |
Gupta A, Jana AK. Effects of wheat straw solid contents in fermentation media on utilization of soluble/insoluble nutrient, fungal growth and laccase production[J]. 3 Biotech, 2018, 8(1):35.
doi: 10.1007/s13205-017-1054-5 URL |
[24] | 杨瑞先, 张拦, 彭彪彪, 等. 芍药内生真菌的鉴定及产生活性次生代谢产物的评估[J]. 微生物学报, 2017, 57(10):1567-1582. |
Yang RX, Zhang L, Peng BB, et al. Fungal endophytes in Paeonia lactiflora and their secondary metabolites[J]. Acta Microbiol Sin, 2017, 57(10):1567-1582. | |
[25] |
Trakunyingcharoen T, Lombard L, Groenewald JZ, et al. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera[J]. IMA Fungus, 2014, 5(2):391-414.
doi: 10.5598/imafungus.2014.05.02.05 pmid: 25734030 |
[26] |
Farha AK, Hatha AM. Bioprospecting potential and secondary metabolite profile of a novel sediment-derived fungus Penicillium sp. ArCSPf from continental slope of Eastern Arabian Sea[J]. Mycology, 2019, 10(2):109-117.
doi: 10.1080/21501203.2019.1572034 URL |
[27] |
Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent[J]. J Biol Chem, 1951, 193(1):265-275.
doi: 10.1016/S0021-9258(19)52451-6 URL |
[28] |
Guo QQ, Du GC, Qi HT, et al. A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode(Bursaphelenchus xylophilus)[J]. Pestic Biochem Physiol, 2017, 135:64-68.
doi: 10.1016/j.pestbp.2016.06.003 URL |
[29] |
Farha AK, Tr T, Purushothaman A, et al. Phylogenetic diversity and biotechnological potentials of marine bacteria from continental slope of eastern Arabian Sea[J]. J Genet Eng Biotechnol, 2018, 16(2):253-258.
doi: 10.1016/j.jgeb.2018.06.002 URL |
[30] |
El-Naggar NE, El-Shweihy NM. Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines[J]. Sci Rep, 2020, 10(1):7942.
doi: 10.1038/s41598-020-64052-x pmid: 32409719 |
[31] | 满意, 魏铭, 王慧凯. 中药重楼活性成分抗肿瘤的作用机制[J]. 药学研究, 2016, 35(6):355-356. |
Man Y, Wei M, Wang HK. The anti-tumor effects of Paris Polyphylla’s Action Mechanism[J]. J Pharm Res, 2016, 35(6):355-356.
doi: 10.1006/phrs.1997.0132 URL |
|
[32] |
Duan Z, Shen R, Liu B, et al. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete[J]. AMB Express, 2018, 8(1):119.
doi: 10.1186/s13568-018-0648-6 URL |
[33] | 杨喆茗, 张益铭, 许伟民, 等. 纤维素酶辅助法提取柚子皮中多糖的工艺研究[J]. 人参研究, 2013, 25(2):31-34. |
Yang ZM, Zhang YM, Xu WM, et al. Study on extraction process of polysaccharide from grapefruit peel by cellulase-assistant extraction[J]. Ginseng Res, 2013, 25(2):31-34. | |
[34] | 许云峰. 银杏内生菌纤维素酶的分离、纯化及其在银杏总黄酮提取中的应用研究[D]. 苏州:苏州大学, 2009. |
Xu YF. The isolation and purification of endophytic fungal cellulase and its application in total flavonoid extraction from Ginkgo biloba L[D]. Suzhou:Soochow University, 2009. | |
[35] | 邢来君, 李明春. 普通真菌学[M]. 北京: 高等教育出版社, 1999. |
Xing LJ, Li MC. General Mycology[M]. Beijing: Higher Education Press, 1999. | |
[36] | López-López M, Léon-Félix J, Allende-Molar R, et al. First report of Setophoma terrestris causing corky and pink root of tomato in Sinaloa, Mexico[J]. Plant Dis, 2020, 104(5):1553. |
[37] |
Albarracín Orio AG, Petras D, Tobares RA, et al. Fungal-bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds[J]. Commun Biol, 2020, 3(1):670.
doi: 10.1038/s42003-020-01342-0 pmid: 33184402 |
[38] | 李云龙. 微生物农药[J]. 中学生物教学, 2002(Z2):23. |
Li YL. Microbial pesticides[J]. Biol Teaghing Middle Sch, 2002(Z2):23. | |
[39] |
de Gruyter J, Woudenberg JH, Aveskamp MM, et al. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma[J]. Mycologia, 2010, 102(5):1066-1081.
doi: 10.3852/09-240 URL |
[40] |
Arora D, Chashoo G, Singamaneni V, et al. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris[J]. J Appl Microbiol, 2018, 124(3):730-739.
doi: 10.1111/jam.13683 pmid: 29288594 |
[41] |
Islam F, Roy N. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses[J]. BMC Res Notes, 2018, 11(1):1-6.
doi: 10.1186/s13104-017-3088-5 URL |
[42] |
Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B. Optimization of cellulase production by Penicillium sp[J]. 3 Biotech, 2016, 6(2):162.
doi: 10.1007/s13205-016-0483-x pmid: 28330234 |
[43] | 王禄山, 曲音波. 纤维素酶高产菌种选育及酶活测定[J]. 生物产业技术, 2008(2):56-61. |
Wang LS, Qu YB. Breeding of high-producing cellulase strains and determination of enzyme activity[J]. Biotechnol Bus, 2008(2):56-61. | |
[44] | 安宝聚. 高产纤维素酶黑曲霉ANSTJ01菌株的分离鉴定与生物学性状探究[D]. 泰安:山东农业大学, 2017. |
An BJ. Identification and exploration of biological characteristics of Aspergillus niger strain ANSTJ01 with high cellulase production[D]. Tai’an:Shandong Agricultural University, 2017. | |
[45] | 杨建宇, 刘冠军, 刘白云, 等. 中华中医药道地药材系列汇讲(8)道地药材滇重楼的研究近况[J]. 现代医学与健康研究电子杂志, 2020, 4(8):117-120. |
Yang JY, Liu GJ, Liu BY, et al. A series of lectures on authentic medicinal materials of Chinese Traditional Chinese Medicine(8)Recent research on authentic medicinal material Paris polyphylla Smith var. yunnanensis[J]. Mod Med Heal Res Electron J, 2020, 4(8):117-120. | |
[46] | 张晓云, 任可, 李维蛟. 通过ITS序列分析鉴定云南重楼内生真菌[J]. 江西农业学报, 2020, 32(3):42-47. |
Zhang XY, Ren K, Li WJ. Identification of endophytic fungi by its sequence analysis in Paris Polyphylla var. Yunnanensis[J]. Acta Agric Jiangxi, 2020, 32(3):42-47. | |
[47] |
Plyasova AA, Pokrovskaya MV, Lisitsyna OM, et al. Penetration into cancer cells via clathrin-dependent mechanism allows L-asparaginase from Rhodospirillum rubrum to inhibit telomerase[J]. Pharmaceuticals, 2020, 13(10):286.
doi: 10.3390/ph13100286 URL |
[48] |
Awad MF, El-Shenawy FS, El-Gendy MMAA, et al. Purification, characterization, and anticancer and antioxidant activities of L-glutaminase from Aspergillus versicolor Faesay4[J]. Int Microbiol, 2021, 24(2):169-181.
doi: 10.1007/s10123-020-00156-8 URL |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[3] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[4] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[5] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[6] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[7] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[8] | 杨俊钊, 张新蕊, 孙清扬, 郑菲. Loop B3对GH7内切纤维素酶功能的影响机制[J]. 生物技术通报, 2023, 39(10): 281-291. |
[9] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[10] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[11] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[12] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[13] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[14] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[15] | 唐昊, 孙灿, 李沅秋, 罗朝兵. 纤维素降解菌Raoultella ornithinolytica LL1的筛选及基因组测序[J]. 生物技术通报, 2021, 37(6): 85-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||