生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 13-22.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0165
收稿日期:
2022-02-11
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
汤茜茜,女,硕士研究生,研究方向:分子植物病理学;E-mail: 基金资助:
TANG Qian-qian(), LIN Chu-yu, TAO Zeng()
Received:
2022-02-11
Published:
2022-07-26
Online:
2022-08-09
摘要:
组蛋白甲基化修饰在调控真核细胞的基因表达中起重要作用,组蛋白甲基化的水平受到组蛋白甲基转移酶(histone methyltransferases,HMTs)和组蛋白去甲基化酶(histone demethylases,HDMs)的动态调控,其中以在赖氨酸残基上的甲基化修饰最为常见。系统总结了植物组蛋白赖氨酸去甲基化酶的最新研究进展,阐述其在植物开花时间调控、昼夜节律调控等生长发育过程,以及植物对干旱、温度、病原菌等胁迫响应中的重要作用及其调控机制,为进一步利用植物组蛋白去甲基化酶在作物遗传改良中提供参考。
汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22.
TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant[J]. Biotechnology Bulletin, 2022, 38(7): 13-22.
KDM类型 Type of KDM | 底物 Substrate | 拟南芥/水稻Arab-idopsis/ Oryza sativa | |
---|---|---|---|
LSD1 | H3K4 | AtFLD | |
AtLDL1 | |||
AtLDL2 | |||
AtLDL3 | |||
OsHDM701 | |||
OsHDM702 | |||
OsHDM703 | |||
OsHDM704 | |||
JHDMs | KDM5/JARID1 | H3K4 | AtJMJ14 |
AtJMJ15 | |||
AtJMJ16 | |||
AtJMJ17 | |||
AtJMJ18 | |||
AtJMJ19 | |||
OsJMJ703 | |||
OsJMJ704 | |||
OsJMJ708 | |||
KDM4 | H3K9 | AtEFL6/AtJMJ11 | |
AtREF6/AtJMJ12 | |||
AtJMJ13 | |||
OsJMJ701 | |||
OsJMJ702 | |||
OsJMJ705 | |||
OsJMJ706 | |||
OsJMJ707 | |||
KDM3/JHDM2 | H3K9 | AtJMJ24 | |
AtIBM1/AtJMJ25 | |||
AtJMJ26 | |||
AtJMJ27 | |||
AtJMJ28 | |||
AtJMJ29 | |||
OsJMJ715 | |||
OsJMJ716 | |||
OsJMJ718 | |||
OsJMJ719 | |||
OsJMJ720 | |||
JmjCdomain-only | H3K36、H3K27 | AtJMJ30 | |
AtJMJ31 | |||
AtJMJ32 | |||
OsJMJ709 | |||
OsJMJ710 | |||
OsJMJ711 | |||
OsJMJ712 | |||
OsJMJ713 | |||
OsJMJ714 | |||
OsJMJ717 |
表1 拟南芥/水稻中赖氨酸去甲基化酶(KDMs)分类
Table 1 Classification of KDMs(lysine demethylases)
KDM类型 Type of KDM | 底物 Substrate | 拟南芥/水稻Arab-idopsis/ Oryza sativa | |
---|---|---|---|
LSD1 | H3K4 | AtFLD | |
AtLDL1 | |||
AtLDL2 | |||
AtLDL3 | |||
OsHDM701 | |||
OsHDM702 | |||
OsHDM703 | |||
OsHDM704 | |||
JHDMs | KDM5/JARID1 | H3K4 | AtJMJ14 |
AtJMJ15 | |||
AtJMJ16 | |||
AtJMJ17 | |||
AtJMJ18 | |||
AtJMJ19 | |||
OsJMJ703 | |||
OsJMJ704 | |||
OsJMJ708 | |||
KDM4 | H3K9 | AtEFL6/AtJMJ11 | |
AtREF6/AtJMJ12 | |||
AtJMJ13 | |||
OsJMJ701 | |||
OsJMJ702 | |||
OsJMJ705 | |||
OsJMJ706 | |||
OsJMJ707 | |||
KDM3/JHDM2 | H3K9 | AtJMJ24 | |
AtIBM1/AtJMJ25 | |||
AtJMJ26 | |||
AtJMJ27 | |||
AtJMJ28 | |||
AtJMJ29 | |||
OsJMJ715 | |||
OsJMJ716 | |||
OsJMJ718 | |||
OsJMJ719 | |||
OsJMJ720 | |||
JmjCdomain-only | H3K36、H3K27 | AtJMJ30 | |
AtJMJ31 | |||
AtJMJ32 | |||
OsJMJ709 | |||
OsJMJ710 | |||
OsJMJ711 | |||
OsJMJ712 | |||
OsJMJ713 | |||
OsJMJ714 | |||
OsJMJ717 |
[1] |
Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2. 8 A resolution[J]. Nature, 1997, 389(6648):251-260.
doi: 10.1038/38444 URL |
[2] |
Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4):693-705.
doi: 10.1016/j.cell.2007.02.005 pmid: 17320507 |
[3] |
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications[J]. Cell Res, 2011, 21(3):381-395.
doi: 10.1038/cr.2011.22 pmid: 21321607 |
[4] |
Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765):41-45.
doi: 10.1038/47412 URL |
[5] |
Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532):1074-1080.
pmid: 11498575 |
[6] | Chen XS, Hu YF, Zhou DX. Epigenetic gene regulation by plant Jumonji group of histone demethylase[J]. Biochim Biophys Acta, 2011, 1809(8):421-426. |
[7] | Zhang YJ, Sun ZX, Jia JQ, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283:1-16. |
[8] | Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11):838-849. |
[9] |
Zhang Y, Reinberg D. Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails[J]. Genes Dev, 2001, 15(18):2343-2360.
doi: 10.1101/gad.927301 URL |
[10] |
Bedford MT, Clarke SG. Protein arginine methylation in mammals:who, what, and why[J]. Mol Cell, 2009, 33(1):1-13.
doi: 10.1016/j.molcel.2008.12.013 pmid: 19150423 |
[11] |
Strahl BD, Ohba R, Cook RG, et al. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena[J]. PNAS, 1999, 96(26):14967-14972.
pmid: 10611321 |
[12] |
Black JC, van Rechem C, Whetstine JR. Histone lysine methylation dynamics:establishment, regulation, and biological impact[J]. Mol Cell, 2012, 48(4):491-507.
doi: 10.1016/j.molcel.2012.11.006 URL |
[13] |
Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nat Rev Mol Cell Biol, 2007, 8(4):307-318.
doi: 10.1038/nrm2143 URL |
[14] |
Lu FL, Li GL, Cui X, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice[J]. J Integr Plant Biol, 2008, 50(7):886-896.
doi: 10.1111/j.1744-7909.2008.00692.x URL |
[15] |
Jiang DH, Yang WN, He YH, et al. Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition[J]. Plant Cell, 2007, 19(10):2975-2987.
doi: 10.1105/tpc.107.052373 URL |
[16] |
Henderson IR, Dean C. Control of Arabidopsis flowering:the chill before the bloom[J]. Development, 2004, 131(16):3829-3838.
pmid: 15289433 |
[17] |
Simpson GG, Dean C. Arabidopsis, the Rosetta stone of flowering time?[J]. Science, 2002, 296(5566):285-289.
pmid: 11951029 |
[18] |
Kardailsky I, Shukla VK, Ahn JH, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286(5446):1962-1965.
pmid: 10583961 |
[19] |
Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell, 1999, 11(5):949-956.
pmid: 10330478 |
[20] |
Suárez-López P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410(6832):1116-1120.
doi: 10.1038/35074138 URL |
[21] |
He YH, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis[J]. Science, 2003, 302(5651):1751-1754.
doi: 10.1126/science.1091109 URL |
[22] |
Noh B, Lee SH, Kim HJ, et al. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time[J]. Plant Cell, 2004, 16(10):2601-2613.
doi: 10.1105/tpc.104.025353 URL |
[23] |
Yang HC, Howard M, Dean C. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC[J]. Proc Natl Acad Sci USA, 2016, 113(33):9369-9374.
doi: 10.1073/pnas.1605733113 URL |
[24] |
Zheng SZ, Hu HM, Ren HM, et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nat Commun, 2019, 10(1):1303.
doi: 10.1038/s41467-019-09310-x URL |
[25] |
Gan ES, Xu YF, Wong JY, et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis[J]. Nat Commun, 2014, 5:5098.
doi: 10.1038/ncomms6098 URL |
[26] |
Lu FL, Cui X, Zhang SB, et al. JMJ 14 is an H3K4 demethylase regulating flowering time in Arabidopsis[J]. Cell Res, 2010, 20(3):387-390.
doi: 10.1038/cr.2010.27 URL |
[27] |
Yang WN, Jiang DH, Jiang JF, et al. A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis[J]. Plant J, 2010, 62(4):663-673.
doi: 10.1111/j.1365-313X.2010.04182.x URL |
[28] |
Ning YQ, Ma ZY, Huang HW, et al. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14[J]. Nucleic Acids Res, 2015, 43(3):1469-1484.
doi: 10.1093/nar/gku1382 URL |
[29] |
Rodrigues VL, Dolde U, Sun B, et al. A microProtein repressor complex in the shoot meristem controls the transition to flowering[J]. Plant Physiol, 2021, 187(1):187-202.
doi: 10.1093/plphys/kiab235 pmid: 34015131 |
[30] | Yang HC, Han ZF, Cao Y, et al. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLCexpression[J]. PLoS Genet, 2012, 8(4):e1002664. |
[31] |
Yang HC, Mo HX, Fan D, et al. Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis[J]. Plant Cell Rep, 2012, 31(7):1297-1308.
doi: 10.1007/s00299-012-1249-5 URL |
[32] | Yokoo T, Saito H, Yoshitake Y, et al. Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1[J]. PLoS One, 2014, 9(4):e96064. |
[33] |
Dutta A, Choudhary P, Caruana J, et al. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time[J]. Plant J, 2017, 91(6):1015-1028.
doi: 10.1111/tpj.13623 URL |
[34] |
Hung FY, Lai YC, Wang JH, et al. The Arabidopsis histone demethylase JMJ28 regulates CONSTANS by interacting with FBH transcription factors[J]. Plant Cell, 2021, 33(4):1196-1211.
doi: 10.1093/plcell/koab014 URL |
[35] |
Wang ZY, Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1(CCA1)gene disrupts circadian rhythms and suppresses its own expression[J]. Cell, 1998, 93(7):1207-1217.
pmid: 9657153 |
[36] |
Schaffer R, Ramsay N, Samach A, et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering[J]. Cell, 1998, 93(7):1219-1229.
pmid: 9657154 |
[37] |
Strayer C, Oyama T, Schultz TF, et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480):768-771.
pmid: 10926537 |
[38] |
Alabadí D, Oyama T, Yanovsky MJ, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531):880-883.
pmid: 11486091 |
[39] |
Harmer SL, Kay SA. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis[J]. Plant Cell, 2005, 17(7):1926-1940.
doi: 10.1105/tpc.105.033035 URL |
[40] |
Gendron JM, Pruneda-Paz JL, Doherty CJ, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor[J]. Proc Natl Acad Sci USA, 2012, 109(8):3167-3172.
doi: 10.1073/pnas.1200355109 URL |
[41] |
Jones MA, Covington MF, DiTacchio L, et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems[J]. Proc Natl Acad Sci USA, 2010, 107(50):21623-21628.
doi: 10.1073/pnas.1014204108 URL |
[42] |
Lu SX, Knowles SM, Webb CJ, et al. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock[J]. Plant Physiol, 2011, 155(2):906-915.
doi: 10.1104/pp.110.167015 URL |
[43] |
Mizuno T, Nomoto Y, Oka H, et al. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana[J]. Plant Cell Physiol, 2014, 55(5):958-976.
doi: 10.1093/pcp/pcu030 URL |
[44] |
Jones MA, Morohashi K, Grotewold E, et al. Arabidopsis JMJD5/JMJ30 acts independently of LUX ARRHYTHMO within the plant circadian clock to enable temperature compensation[J]. Front Plant Sci, 2019, 10:57.
doi: 10.3389/fpls.2019.00057 URL |
[45] |
Hung FY, Chen FF, Li CL, et al. The LDL1/2-HDA6 histone modification complex interacts with TOC1 and regulates the core circadian clock components in Arabidopsis[J]. Front Plant Sci, 2019, 10:233.
doi: 10.3389/fpls.2019.00233 URL |
[46] |
Song QX, Huang T, Yu HH, et al. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis[J]. Genome Biol, 2019, 20(1):170.
doi: 10.1186/s13059-019-1777-1 URL |
[47] |
Lee HG, Seo PJ. The Arabidopsis JMJ29 protein controls circadian oscillation through diurnal histone demethylation at the CCA1 and PRR9 loci[J]. Genes, 2021, 12(4):529.
doi: 10.3390/genes12040529 URL |
[48] | Bentsink L, Koornneef M. Seed dormancy and germination[J]. Arabidopsis Book, 2008, 6:e0119. |
[49] | Bouyer D, Roudier F, Heese M, et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition[J]. PLoS Genet, 2011, 7(3):e1002014. |
[50] |
Cho JN, Ryu JY, Jeong YM, et al. Control of seed germination by light-induced histone arginine demethylation activity[J]. Dev Cell, 2012, 22(4):736-748.
doi: 10.1016/j.devcel.2012.01.024 URL |
[51] |
van Zanten M, Zöll C, Wang Z, et al. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds[J]. Plant J, 2014, 80(3):475-488.
doi: 10.1111/tpj.12646 URL |
[52] | Zhao ML, Yang SG, Liu XC, et al. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes[J]. Front Plant Sci, 2015, 6:159. |
[53] |
Wu JF, Ichihashi Y, Suzuki T, et al. Abscisic acid-dependent histone demethylation during postgermination growth arrest in Arabidopsis[J]. Plant Cell Environ, 2019, 42(7):2198-2214.
doi: 10.1111/pce.13547 URL |
[54] |
Wu JF, Yan ML, Zhang DW, et al. Histone demethylases coordinate the antagonistic interaction between abscisic acid and brassinosteroid signaling in Arabidopsis[J]. Front Plant Sci, 2020, 11:596835.
doi: 10.3389/fpls.2020.596835 URL |
[55] |
Wang TJ, Huang SZ, Zhang A, et al. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis[J]. New Phytol, 2021, 230(2):567-584.
doi: 10.1111/nph.17177 URL |
[56] |
Lim PO, Kim HJ, Nam HG. Leaf senescence[J]. Annu Rev Plant Biol, 2007, 58:115-136.
doi: 10.1146/annurev.arplant.57.032905.105316 URL |
[57] |
Liu P, Zhang SB, Zhou B, et al. The histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis[J]. Plant Cell, 2019, 31(2):430-443.
doi: 10.1105/tpc.18.00693 URL |
[58] | Wang XL, Gao J, Gao S, et al. The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis[J]. PLoS Genet, 2019, 15(4):e1008068. |
[59] |
Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants[J]. Curr Opin Plant Biol, 2009, 12(2):133-139.
doi: 10.1016/j.pbi.2008.12.006 URL |
[60] |
Kim JM, To TK, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant Cell Physiol, 2008, 49(10):1580-1588.
doi: 10.1093/pcp/pcn133 URL |
[61] |
Huang SZ, Zhang A, Jin JB, et al. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response[J]. New Phytol, 2019, 223(3):1372-1387.
doi: 10.1111/nph.15874 URL |
[62] |
Song T, Zhang Q, Wang HQ, et al. OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress[J]. Plant Physiol Biochem, 2018, 132:183-188.
doi: 10.1016/j.plaphy.2018.09.007 URL |
[63] |
Wang QL, Liu P, Jing H, et al. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis[J]. New Phytol, 2021, 232(1):221-236.
doi: 10.1111/nph.17593 URL |
[64] |
Charng YY, Liu HC, Liu NY, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiol, 2007, 143(1):251-262.
doi: 10.1104/pp.106.091322 URL |
[65] |
Lämke J, Brzezinka K, Altmann S, et al. A hit-and-Run heat shock factor governs sustained histone methylation and transcriptional stress memory[J]. EMBO J, 2016, 35(2):162-175.
doi: 10.15252/embj.201592593 pmid: 26657708 |
[66] |
Cui XY, Zheng Y, Lu Y, et al. Metabolic control of histone demethylase activity involved in plant response to high temperature[J]. Plant Physiol, 2021, 185(4):1813-1828.
doi: 10.1093/plphys/kiab020 URL |
[67] | Liu JZ, Feng LL, Gu XT, et al.An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis[J]. Cell Res, 2019, 29(5):379-390. |
[68] |
Yamaguchi N, Matsubara S, Yoshimizu K, et al. H3K27me3 demethylases alter HSP22 and HSP17. 6C expression in response to recurring heat in Arabidopsis[J]. Nat Commun, 2021, 12(1):3480.
doi: 10.1038/s41467-021-23766-w URL |
[69] |
Yamaguchi N, Ito T. JMJ histone demethylases balance H3K27me3 and H3K4me3 levels at the HSP21 locus during heat acclimation in Arabidopsis[J]. Biomolecules, 2021, 11(6):852.
doi: 10.3390/biom11060852 URL |
[70] |
Gómez-Gómez L, Boller T. Flagellin perception:a paradigm for innate immunity[J]. Trends Plant Sci, 2002, 7(6):251-256.
pmid: 12049921 |
[71] |
Zipfel C, Felix G. Plants and animals:a different taste for microbes?[J]. Curr Opin Plant Biol, 2005, 8(4):353-360.
pmid: 15922649 |
[72] |
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system[J]. Cell Death Differ, 2011, 18(8):1247-1256.
doi: 10.1038/cdd.2011.37 pmid: 21475301 |
[73] |
Koornneef A, Pieterse CMJ. Cross talk in defense signaling[J]. Plant Physiol, 2008, 146(3):839-844.
doi: 10.1104/pp.107.112029 pmid: 18316638 |
[74] |
Pieterse CMJ, Leon-Reyes A, van der Ent S, et al. Networking by small-molecule hormones in plant immunity[J]. Nat Chem Biol, 2009, 5(5):308-316.
doi: 10.1038/nchembio.164 pmid: 19377457 |
[75] |
Thilmony R, Underwood W, He SY. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7[J]. Plant J, 2006, 46(1):34-53.
pmid: 16553894 |
[76] |
Alvarez-Venegas R, Abdallat AA, Guo M, et al. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways[J]. Epigenetics, 2007, 2(2):106-113.
pmid: 17965588 |
[77] |
Ding B, Wang GL. Chromatin versus pathogens:the function of epigenetics in plant immunity[J]. Front Plant Sci, 2015, 6:675.
doi: 10.3389/fpls.2015.00675 pmid: 26388882 |
[78] |
Deleris A, Greenberg MVC, Ausin I, et al. Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation[J]. EMBO Rep, 2010, 11(12):950-955.
doi: 10.1038/embor.2010.158 URL |
[79] |
le Masson I, Jauvion V, Bouteiller N, et al. Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription[J]. Plant Cell, 2012, 24(9):3603-3612.
doi: 10.1105/tpc.112.103119 URL |
[80] |
Li D, Liu RY, Singh D, et al. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels[J]. New Phytol, 2020, 225(5):2108-2121.
doi: 10.1111/nph.16270 URL |
[81] |
Noh SW, Seo RR, Park HJ, et al. Two Arabidopsis homologs of human lysine-specific demethylase function in epigenetic regulation of plant defense responses[J]. Front Plant Sci, 2021, 12:688003.
doi: 10.3389/fpls.2021.688003 URL |
[82] |
Chan C, Zimmerli L. The histone demethylase IBM1 positively regulates Arabidopsis immunity by control of defense gene expression[J]. Front Plant Sci, 2019, 10:1587.
doi: 10.3389/fpls.2019.01587 URL |
[83] |
Li TT, Chen XS, Zhong XC, et al. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice[J]. Plant Cell, 2013, 25(11):4725-4736.
doi: 10.1105/tpc.113.118802 URL |
[84] |
Hou YX, Wang LY, Wang L, et al. 704 positively regulates rice defense response against Xanthomonas oryzae pv. oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators[J]. BMC Plant Biol, 2015, 15:286.
doi: 10.1186/s12870-015-0674-3 URL |
[85] |
Saze H, Shiraishi A, Miura A, et al. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana[J]. Science, 2008, 319(5862):462-465.
doi: 10.1126/science.1150987 URL |
[86] |
Audonnet L, Shen Y, Zhou DX. JMJ24 antagonizes histone H3K9 demethylase IBM1/JMJ25 function and interacts with RNAi pathways for gene silencing[J]. Gene Expr Patterns, 2017, 25/26:1-7.
doi: 10.1016/j.gep.2017.04.001 URL |
[87] | Antunez-Sanchez J, Naish M, Ramirez-Prado JS, et al. A new role for histone demethylases in the maintenance of plant genome integrity[J]. eLife, 2020, 9:e58533. |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[4] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[5] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[6] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[7] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[8] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[11] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[12] | 陈桂芳, 杨佳怡, 高运华, 任歌. 染色质免疫共沉淀测序技术研究进展[J]. 生物技术通报, 2022, 38(7): 40-50. |
[13] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[14] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[15] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||