生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 160-170.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1285
王慧1(), 马艺文2, 乔正浩3, 常彦彩3, 术琨3, 丁海萍3, 聂永心3(), 潘光堂1()
收稿日期:
2021-10-09
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
王慧,女,博士研究生,研究方向:植物分子生物学;E-mail: 基金资助:
WANG Hui1(), MA Yi-wen2, QIAO Zheng-hao3, CHANG Yan-cai3, ZHU Kun3, DING Hai-ping3, NIE Yong-xin3(), PAN Guang-tang1()
Received:
2021-10-09
Published:
2022-07-26
Online:
2022-08-09
摘要:
交替氧化酶(alternative oxidase,AOX)是植物呼吸途径上的一种末端氧化酶,通过对玉米、水稻、拟南芥、二穗短柄草、番茄、马铃薯、高粱、大豆等8个物种中AOX基因进行鉴定分析,以期进一步挖掘AOX基因的功能以及调控机制。在8个物种中共鉴定到35个编码AOX蛋白的基因,通过聚类分析将其划分为5个亚家族。通过分析和比较AOX基因的系统进化关系、染色体位置、外显子-内含子结构以及保守基序,进一步验证了该亚家族划分模式,同时也揭示了AOX基因在进化过程中具有较强的保守性。通过顺式作用元件预测、miRNA靶位点预测以及AOX蛋白的GO注释分析,发现AOX基因可能在植物生长发育以及应激反应中发挥重要作用。在玉米苗期进行低温、高温、干旱以及盐碱胁迫处理后,对玉米中4个AOX基因进行qRT-PCR分析表明,4个AOX基因呈现不同程度的诱导表达,暗示它们在逆境胁迫应答上存在密切关系。该研究结果为深入理解AOX基因的生物学功能以及响应逆境胁迫的调控机制奠定了基础。
王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170.
WANG Hui, MA Yi-wen, QIAO Zheng-hao, CHANG Yan-cai, ZHU Kun, DING Hai-ping, NIE Yong-xin, PAN Guang-tang. Structural and Functional Characterization of AOX Gene Family[J]. Biotechnology Bulletin, 2022, 38(7): 160-170.
引物名称Gene name | 上游引物Upstream primer(5'-3') | 下游引物Downstream primer(5'-3') |
---|---|---|
18S | CTGAGAAACGGCTACCACA | CCCAAGGTCCAACTACGAG |
Zm00001d017727qRT | TGGACCGTCAAATTACTGCG | ATGCGTTCATTCTCCGCCTC |
Zm00001d002434qRT | CTACTGGGGCATCGACACG | GCAGCGACTTGACGATCAG |
Zm00001d002435qRT | AGGGGCAGGACAAGAAGGCCG | TACGTGTCCCATGGCCTGAA |
Zm00001d002436qRT | GCTTATGTCCACGTCCTCCC | TGTACGTCTCCCATGGCCTA |
表1 引物序列
Table1 Prime Sequence
引物名称Gene name | 上游引物Upstream primer(5'-3') | 下游引物Downstream primer(5'-3') |
---|---|---|
18S | CTGAGAAACGGCTACCACA | CCCAAGGTCCAACTACGAG |
Zm00001d017727qRT | TGGACCGTCAAATTACTGCG | ATGCGTTCATTCTCCGCCTC |
Zm00001d002434qRT | CTACTGGGGCATCGACACG | GCAGCGACTTGACGATCAG |
Zm00001d002435qRT | AGGGGCAGGACAAGAAGGCCG | TACGTGTCCCATGGCCTGAA |
Zm00001d002436qRT | GCTTATGTCCACGTCCTCCC | TGTACGTCTCCCATGGCCTA |
基因ID Gene ID | 染色体编号 Chrom No. | 氨基酸长 Length/ aa | 分子质量 Molecular weight/ kD | 等电点 pI | 重力值 GRAVY | 亚细胞定位 Location |
---|---|---|---|---|---|---|
AtAOX1a_AT3G22370.1 | 3 | 354 | 39.98 | 8.56 | -0.33 | Cytoplasmic |
AtAOX1b_AT3G22360.1 | 3 | 325 | 37.43 | 8.55 | -0.35 | Cytoplasmic |
AtAOX1c_AT3G27620.1 | 3 | 329 | 37.82 | 6.91 | -0.33 | Cytoplasmic |
AtAOX1d_AT1G32350.1 | 1 | 318 | 36.20 | 8.65 | -0.29 | Cytoplasmic |
AtAOX2_AT5G64210.1 | 5 | 353 | 40.09 | 9.14 | -0.17 | Cytoplasmic |
BdAOX_KQJ84389 | 5 | 333 | 37.34 | 8.37 | -0.21 | Periplasmic |
BdAOX_KQJ84390 | 5 | 324 | 36.14 | 7.88 | -0.19 | Periplasmic |
BdAOX_KQJ84391 | 5 | 330 | 36.77 | 7.29 | -0.22 | Periplasmic |
BdAOX_KQK00893 | 3 | 394 | 43.98 | 9.37 | -0.24 | Cytoplasmic |
BdAOX_PNT69270 | 3 | 391 | 43.67 | 9.49 | -0.29 | Cytoplasmic |
GmAOX_KRH42153 | 8 | 326 | 37.12 | 8.68 | -0.32 | Cytoplasmic |
GmAOX_KRH42154 | 8 | 333 | 38.14 | 9.36 | -0.27 | Cytoplasmic |
GmAOX_KRH58272 | 5 | 317 | 36.01 | 9.01 | -0.18 | Cytoplasmic |
GmAOX_KRH62683 | 4 | 321 | 36.48 | 8.57 | -0.24 | Cytoplasmic |
OsAOX_Os02t0318100-00 | 2 | 353 | 39.46 | 9.46 | -0.17 | Periplasmic |
OsAOX_Os02t0700400-01 | 2 | 345 | 37.89 | 8.31 | -0.15 | Cytoplasmic |
OsAOX_Os04t0600200-01 | 4 | 332 | 37.14 | 7.82 | -0.12 | Cytoplasmic |
OsAOX_Os04t0600300-01 | 4 | 335 | 37.25 | 7.23 | -0.21 | Periplasmic |
SbAOX_EES05672 | 4 | 346 | 38.47 | 7.82 | -0.15 | Cytoplasmic |
SbAOX_EES12781 | 6 | 331 | 37.16 | 8.63 | -0.23 | Periplasmic |
SbAOX_EES12782 | 6 | 314 | 35.58 | 8.78 | -0.23 | Cytoplasmic |
SbAOX_EES12783 | 6 | 332 | 36.84 | 7.96 | -0.20 | Cytoplasmic |
SlAOX_Solyc01g105220.3.1 | 1 | 348 | 39.91 | 8.56 | -0.26 | Cytoplasmic |
SlAOX_Solyc08g005560.3.1 | 8 | 753 | 85.44 | 8.07 | -0.14 | Cytoplasmic |
SlAOX_Solyc08g075540.3.1 | 8 | 642 | 72.72 | 8.30 | -0.30 | Periplasmic |
StAOX_PGSC0003DMT400019707 | 8 | 321 | 36.72 | 6.76 | -0.38 | Cytoplasmic |
StAOX_PGSC0003DMT400019708 | 8 | 356 | 39.82 | 8.29 | -0.28 | Periplasmic |
StAOX_PGSC0003DMT400019709 | 8 | 355 | 39.64 | 7.75 | -0.22 | Periplasmic |
StAOX_PGSC0003DMT400019710 | 8 | 174 | 19.68 | 5.44 | 0.02 | Cytoplasmic |
StAOX_PGSC0003DMT400032705 | 1 | 353 | 40.36 | 8.45 | -0.19 | Cytoplasmic |
StAOX_PGSC0003DMT400047562 | 8 | 279 | 31.91 | 9.08 | -0.12 | Cytoplasmic |
ZmAOX_Zm00001d002434_P001 | 2 | 332 | 36.77 | 8.02 | -0.16 | Cytoplasmic |
ZmAOX_Zm00001d002435_P001 | 2 | 329 | 37.04 | 8.98 | -0.23 | Periplasmic |
ZmAOX_Zm00001d002436_P001 | 2 | 329 | 36.90 | 8.84 | -0.20 | Periplasmic |
ZmAOX_Zm00001d017727_P001 | 5 | 347 | 38.72 | 8.37 | -0.16 | Cytoplasmic |
表2 8个物种AOX基因家族的鉴定及理化性质
Table 2 Identification and characteristic features of AOX gene family in eight species
基因ID Gene ID | 染色体编号 Chrom No. | 氨基酸长 Length/ aa | 分子质量 Molecular weight/ kD | 等电点 pI | 重力值 GRAVY | 亚细胞定位 Location |
---|---|---|---|---|---|---|
AtAOX1a_AT3G22370.1 | 3 | 354 | 39.98 | 8.56 | -0.33 | Cytoplasmic |
AtAOX1b_AT3G22360.1 | 3 | 325 | 37.43 | 8.55 | -0.35 | Cytoplasmic |
AtAOX1c_AT3G27620.1 | 3 | 329 | 37.82 | 6.91 | -0.33 | Cytoplasmic |
AtAOX1d_AT1G32350.1 | 1 | 318 | 36.20 | 8.65 | -0.29 | Cytoplasmic |
AtAOX2_AT5G64210.1 | 5 | 353 | 40.09 | 9.14 | -0.17 | Cytoplasmic |
BdAOX_KQJ84389 | 5 | 333 | 37.34 | 8.37 | -0.21 | Periplasmic |
BdAOX_KQJ84390 | 5 | 324 | 36.14 | 7.88 | -0.19 | Periplasmic |
BdAOX_KQJ84391 | 5 | 330 | 36.77 | 7.29 | -0.22 | Periplasmic |
BdAOX_KQK00893 | 3 | 394 | 43.98 | 9.37 | -0.24 | Cytoplasmic |
BdAOX_PNT69270 | 3 | 391 | 43.67 | 9.49 | -0.29 | Cytoplasmic |
GmAOX_KRH42153 | 8 | 326 | 37.12 | 8.68 | -0.32 | Cytoplasmic |
GmAOX_KRH42154 | 8 | 333 | 38.14 | 9.36 | -0.27 | Cytoplasmic |
GmAOX_KRH58272 | 5 | 317 | 36.01 | 9.01 | -0.18 | Cytoplasmic |
GmAOX_KRH62683 | 4 | 321 | 36.48 | 8.57 | -0.24 | Cytoplasmic |
OsAOX_Os02t0318100-00 | 2 | 353 | 39.46 | 9.46 | -0.17 | Periplasmic |
OsAOX_Os02t0700400-01 | 2 | 345 | 37.89 | 8.31 | -0.15 | Cytoplasmic |
OsAOX_Os04t0600200-01 | 4 | 332 | 37.14 | 7.82 | -0.12 | Cytoplasmic |
OsAOX_Os04t0600300-01 | 4 | 335 | 37.25 | 7.23 | -0.21 | Periplasmic |
SbAOX_EES05672 | 4 | 346 | 38.47 | 7.82 | -0.15 | Cytoplasmic |
SbAOX_EES12781 | 6 | 331 | 37.16 | 8.63 | -0.23 | Periplasmic |
SbAOX_EES12782 | 6 | 314 | 35.58 | 8.78 | -0.23 | Cytoplasmic |
SbAOX_EES12783 | 6 | 332 | 36.84 | 7.96 | -0.20 | Cytoplasmic |
SlAOX_Solyc01g105220.3.1 | 1 | 348 | 39.91 | 8.56 | -0.26 | Cytoplasmic |
SlAOX_Solyc08g005560.3.1 | 8 | 753 | 85.44 | 8.07 | -0.14 | Cytoplasmic |
SlAOX_Solyc08g075540.3.1 | 8 | 642 | 72.72 | 8.30 | -0.30 | Periplasmic |
StAOX_PGSC0003DMT400019707 | 8 | 321 | 36.72 | 6.76 | -0.38 | Cytoplasmic |
StAOX_PGSC0003DMT400019708 | 8 | 356 | 39.82 | 8.29 | -0.28 | Periplasmic |
StAOX_PGSC0003DMT400019709 | 8 | 355 | 39.64 | 7.75 | -0.22 | Periplasmic |
StAOX_PGSC0003DMT400019710 | 8 | 174 | 19.68 | 5.44 | 0.02 | Cytoplasmic |
StAOX_PGSC0003DMT400032705 | 1 | 353 | 40.36 | 8.45 | -0.19 | Cytoplasmic |
StAOX_PGSC0003DMT400047562 | 8 | 279 | 31.91 | 9.08 | -0.12 | Cytoplasmic |
ZmAOX_Zm00001d002434_P001 | 2 | 332 | 36.77 | 8.02 | -0.16 | Cytoplasmic |
ZmAOX_Zm00001d002435_P001 | 2 | 329 | 37.04 | 8.98 | -0.23 | Periplasmic |
ZmAOX_Zm00001d002436_P001 | 2 | 329 | 36.90 | 8.84 | -0.20 | Periplasmic |
ZmAOX_Zm00001d017727_P001 | 5 | 347 | 38.72 | 8.37 | -0.16 | Cytoplasmic |
图3 玉米与其他物种AOX基因的共线性分析 (a)拟南芥;(b)水稻;(c)高粱;(d)二穗短柄草;(e)番茄;(f)大豆;(g)马铃薯
Fig. 3 Collinearity of AOX genes between maize and other species (a)Arabidopsis thaliana.(b)Oryza sativa.(c)Sorghum bicolor.(d)Brachypodium distachyon.(e)Solanum lycopersicum.(f)Glycine max.(g)Solanum tuberosum
玉米AOX ZmAOXs | 染色体编号 Chrom No. | 其他物种AOX Other AOXs | 染色体编号 Chrom No. | N | S | Ka | Ks | Ka/Ks | Mya |
---|---|---|---|---|---|---|---|---|---|
ZmAOX_Zm00001d002434_P001 | 2 | SbAOX_EES12783 | 6 | 842.4 | 126.6 | 0.05 | 0.47 | 0.10 | 36.49 |
ZmAOX_Zm00001d002435_P001 | 2 | BdAOX_KQJ84390 | 5 | 824.5 | 141.5 | 0.09 | 1.86 | 0.05 | 143.31 |
ZmAOX_Zm00001d002435_P001 | 2 | OsAOX_Os04t0600300-01 | 4 | 858.2 | 128.8 | 0.10 | 0.79 | 0.13 | 60.89 |
ZmAOX_Zm00001d002435_P001 | 2 | SbAOX_EES12782 | 6 | 826 | 113 | 0.02 | 0.24 | 0.08 | 18.32 |
ZmAOX_Zm00001d002436_P001 | 2 | AtAOX1a_AT3G22370.1 | 3 | 729.6 | 248.4 | 0.20 | 65.03 | 0.00 | 5 002.48 |
ZmAOX_Zm00001d002436_P001 | 2 | BdAOX_KQJ84389 | 5 | 839.3 | 147.7 | 0.09 | 1.09 | 0.09 | 84.08 |
ZmAOX_Zm00001d002436_P001 | 2 | GmAOX_KRH62683 | 4 | 738.7 | 218.3 | 0.21 | 72.34 | 0.00 | 5 564.66 |
ZmAOX_Zm00001d002436_P001 | 2 | OsAOX_Os04t0600200-01 | 4 | 838.9 | 139.1 | 0.08 | 1.12 | 0.07 | 86.45 |
ZmAOX_Zm00001d002436_P001 | 2 | SbAOX_EES12781 | 6 | 850.2 | 136.8 | 0.01 | 0.29 | 0.03 | 22.22 |
ZmAOX_Zm00001d002436_P001 | 2 | SlAOX_Solyc01g105220.3.1 | 1 | 747.2 | 230.8 | 0.26 | 23.83 | 0.01 | 1 832.88 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_KQK00893 | 3 | 856.1 | 157.9 | 0.08 | 1.44 | 0.06 | 110.84 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_PNT69270 | 3 | 848.1 | 156.9 | 0.11 | 1.85 | 0.06 | 142.36 |
ZmAOX_Zm00001d017727_P001 | 5 | GmAOX_KRH62683 | 4 | 727.2 | 226.8 | 0.21 | 24.26 | 0.01 | 1 866.37 |
ZmAOX_Zm00001d017727_P001 | 5 | OsAOX_Os02t0700400-01 | 2 | 864.9 | 161.1 | 0.10 | 1.45 | 0.07 | 111.63 |
ZmAOX_Zm00001d017727_P001 | 5 | SbAOX_EES05672 | 4 | 865.8 | 169.2 | 0.02 | 0.22 | 0.08 | 16.71 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019708 | 8 | 760.2 | 262.8 | 0.28 | 25.43 | 0.01 | 1 955.81 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019709 | 8 | 752.6 | 261.4 | 0.32 | 15.51 | 0.02 | 1 193.40 |
表3 玉米AOX和其他7个物种之间直系同源AOX蛋白的Ka / Ks
Table 3 Ka/Ks for orthologous AOX proteins between Z. mays and other seven species
玉米AOX ZmAOXs | 染色体编号 Chrom No. | 其他物种AOX Other AOXs | 染色体编号 Chrom No. | N | S | Ka | Ks | Ka/Ks | Mya |
---|---|---|---|---|---|---|---|---|---|
ZmAOX_Zm00001d002434_P001 | 2 | SbAOX_EES12783 | 6 | 842.4 | 126.6 | 0.05 | 0.47 | 0.10 | 36.49 |
ZmAOX_Zm00001d002435_P001 | 2 | BdAOX_KQJ84390 | 5 | 824.5 | 141.5 | 0.09 | 1.86 | 0.05 | 143.31 |
ZmAOX_Zm00001d002435_P001 | 2 | OsAOX_Os04t0600300-01 | 4 | 858.2 | 128.8 | 0.10 | 0.79 | 0.13 | 60.89 |
ZmAOX_Zm00001d002435_P001 | 2 | SbAOX_EES12782 | 6 | 826 | 113 | 0.02 | 0.24 | 0.08 | 18.32 |
ZmAOX_Zm00001d002436_P001 | 2 | AtAOX1a_AT3G22370.1 | 3 | 729.6 | 248.4 | 0.20 | 65.03 | 0.00 | 5 002.48 |
ZmAOX_Zm00001d002436_P001 | 2 | BdAOX_KQJ84389 | 5 | 839.3 | 147.7 | 0.09 | 1.09 | 0.09 | 84.08 |
ZmAOX_Zm00001d002436_P001 | 2 | GmAOX_KRH62683 | 4 | 738.7 | 218.3 | 0.21 | 72.34 | 0.00 | 5 564.66 |
ZmAOX_Zm00001d002436_P001 | 2 | OsAOX_Os04t0600200-01 | 4 | 838.9 | 139.1 | 0.08 | 1.12 | 0.07 | 86.45 |
ZmAOX_Zm00001d002436_P001 | 2 | SbAOX_EES12781 | 6 | 850.2 | 136.8 | 0.01 | 0.29 | 0.03 | 22.22 |
ZmAOX_Zm00001d002436_P001 | 2 | SlAOX_Solyc01g105220.3.1 | 1 | 747.2 | 230.8 | 0.26 | 23.83 | 0.01 | 1 832.88 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_KQK00893 | 3 | 856.1 | 157.9 | 0.08 | 1.44 | 0.06 | 110.84 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_PNT69270 | 3 | 848.1 | 156.9 | 0.11 | 1.85 | 0.06 | 142.36 |
ZmAOX_Zm00001d017727_P001 | 5 | GmAOX_KRH62683 | 4 | 727.2 | 226.8 | 0.21 | 24.26 | 0.01 | 1 866.37 |
ZmAOX_Zm00001d017727_P001 | 5 | OsAOX_Os02t0700400-01 | 2 | 864.9 | 161.1 | 0.10 | 1.45 | 0.07 | 111.63 |
ZmAOX_Zm00001d017727_P001 | 5 | SbAOX_EES05672 | 4 | 865.8 | 169.2 | 0.02 | 0.22 | 0.08 | 16.71 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019708 | 8 | 760.2 | 262.8 | 0.28 | 25.43 | 0.01 | 1 955.81 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019709 | 8 | 752.6 | 261.4 | 0.32 | 15.51 | 0.02 | 1 193.40 |
miRNA 序号 miRNA accession | 靶基因ID Target accession | E值 Expectation | 抑制作用 Inhibition | miRNA起始 miRNA start | miRNA终止 miRNA end | 基因起始 Target start | 基因终止 Target end |
---|---|---|---|---|---|---|---|
ath-miR5021 | AtAOX1c_AT3G27620.1 | 2.5 | Cleavage | 1 | 20 | 6 | 25 |
bdi-miR5175a | BdAOX_KQK00893 | 3 | Translation | 1 | 21 | 1 686 | 1 706 |
bdi-miR5175a | BdAOX_PNT69270 | 3 | Translation | 1 | 21 | 1 671 | 1 691 |
gma-miR1507a | GmAOX_KRH62683 | 3.5 | Translation | 1 | 22 | 370 | 391 |
sbi-miR6220-5p | SbAOX_EES12782 | 0.5 | Cleavage | 1 | 24 | 1 558 | 1 581 |
sly-miR319a | SlAOX_Solyc08g005560.3.1 | 3.5 | Cleavage | 1 | 20 | 1 172 | 1 191 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019708 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019709 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019710 | 3.5 | Translation | 1 | 21 | 132 | 152 |
stu-miR7981-3p | StAOX_PGSC0003DMT400032705 | 3.5 | Translation | 1 | 24 | 1 394 | 1 417 |
zma-miR395c-3p | ZmAOX_Zm00001d002435_P001 | 2.5 | Cleavage | 1 | 21 | 78 | 98 |
表4 psRNATarget在线工具鉴定靶向作用AOX基因的假定miRNA
Table 4 List of putative miRNAs targeted AOX genes identified by psRNATarget online tool
miRNA 序号 miRNA accession | 靶基因ID Target accession | E值 Expectation | 抑制作用 Inhibition | miRNA起始 miRNA start | miRNA终止 miRNA end | 基因起始 Target start | 基因终止 Target end |
---|---|---|---|---|---|---|---|
ath-miR5021 | AtAOX1c_AT3G27620.1 | 2.5 | Cleavage | 1 | 20 | 6 | 25 |
bdi-miR5175a | BdAOX_KQK00893 | 3 | Translation | 1 | 21 | 1 686 | 1 706 |
bdi-miR5175a | BdAOX_PNT69270 | 3 | Translation | 1 | 21 | 1 671 | 1 691 |
gma-miR1507a | GmAOX_KRH62683 | 3.5 | Translation | 1 | 22 | 370 | 391 |
sbi-miR6220-5p | SbAOX_EES12782 | 0.5 | Cleavage | 1 | 24 | 1 558 | 1 581 |
sly-miR319a | SlAOX_Solyc08g005560.3.1 | 3.5 | Cleavage | 1 | 20 | 1 172 | 1 191 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019708 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019709 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019710 | 3.5 | Translation | 1 | 21 | 132 | 152 |
stu-miR7981-3p | StAOX_PGSC0003DMT400032705 | 3.5 | Translation | 1 | 24 | 1 394 | 1 417 |
zma-miR395c-3p | ZmAOX_Zm00001d002435_P001 | 2.5 | Cleavage | 1 | 21 | 78 | 98 |
[1] | Moore AL, Siedow JN. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria[J]. Biochim et Biophys Acta BBA Bioenerg, 1991, 1059(2):121-140. |
[2] | 李严曼. 西瓜线粒体交替氧化酶基因的克隆及交替呼吸途径对西瓜低温抗性的调控[D]. 杭州: 浙江大学, 2011. |
Li YM. Cloning of watermelon mitochondrial alternative oxidase gene and regulation of alternative respiratory pathway on watermelon resistance to low temperature[D]. Hangzhou: Zhejiang University, 2011. | |
[3] |
Gomes CM, Le Gall J, Xavier AV, et al. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase?[J]. Chembiochem, 2001, 2(7/8):583-587.
doi: 10.1002/1439-7633(20010803)2:7/8<583::AID-CBIC583>3.0.CO;2-5 URL |
[4] |
McDonald AE, Vanlerberghe GC. Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase[J]. Comp Biochem Physiol Part D Genomics Proteomics, 2006, 1(3):357-364.
doi: 10.1016/j.cbd.2006.08.001 pmid: 20483267 |
[5] |
Finnegan PM, Umbach AL, Wilce JA. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes[J]. FEBS Lett, 2003, 555(3):425-430.
pmid: 14675750 |
[6] | Nobre T, Campos MD, Lucic-Mercy E, et al. Misannotation awareness:a tale of two gene-groups[J]. Front Plant Sci, 2016, 7:868. |
[7] |
Suzuki T, Hashimoto T, Yabu Y, et al. Alternative oxidase(AOX)genes of African trypanosomes:phylogeny and evolution of AOX and plastid terminal oxidase families[J]. J Eukaryot Microbiol, 2005, 52(4):374-381.
doi: 10.1111/j.1550-7408.2005.00050.x URL |
[8] |
MacKenzie S, McIntosh L. Higher plant mitochondria[J]. Plant Cell, 1999, 11(4):571-585.
doi: 10.1105/tpc.11.4.571 URL |
[9] |
Moore AL, Albury MS, Crichton PG, et al. Function of the alternative oxidase:is it still a scavenger?[J]. Trends Plant Sci, 2002, 7(11):478-481.
doi: 10.1016/S1360-1385(02)02366-X URL |
[10] |
Vanlerberghe GC. Alternative oxidase:a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants[J]. Int J Mol Sci, 2013, 14(4):6805-6847.
doi: 10.3390/ijms14046805 pmid: 23531539 |
[11] | Wanniarachchi VR, Dametto L, Sweetman C, et al. Alternative respiratory pathway component genes(AOX and ND)in rice and barley and their response to stress[J]. Int J Mol Sci, 2018, 19(3):E915. |
[12] |
Wang H, Huang J, Liang X, et al. Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus[J]. Planta, 2012, 235(1):53-67.
doi: 10.1007/s00425-011-1488-7 URL |
[13] |
Panda SK, Sahoo L, Katsuhara M, et al. Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells[J]. Mol Biotechnol, 2013, 54(2):551-563.
doi: 10.1007/s12033-012-9595-7 URL |
[14] |
Prado C, Rodríguez-Montelongo L, González JA, et al. Uptake of chromium by Salvinia minima:effect on plant growth, leaf respiration and carbohydrate metabolism[J]. J Hazard Mater, 2010, 177(1/2/3):546-553.
doi: 10.1016/j.jhazmat.2009.12.067 URL |
[15] |
Keunen E, Schellingen K, Van Der Straeten D, et al. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves[J]. J Exp Bot, 2015, 66(10):2967-2977.
doi: 10.1093/jxb/erv035 pmid: 25743159 |
[16] |
Liao YW, Liu YR, Liang JY, et al. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus[J]. Planta, 2015, 241(3):641-650.
doi: 10.1007/s00425-014-2207-y URL |
[17] |
Vanlerberghe GC, Martyn GD, Dahal K. Alternative oxidase:a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress[J]. Physiol Plant, 2016, 157(3):322-337.
doi: 10.1111/ppl.12451 pmid: 27080742 |
[18] |
Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ, et al. Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress[J]. Plant Cell Environ, 2016, 39(11):2361-2369.
doi: 10.1111/pce.12776 URL |
[19] |
Murik O, Tirichine L, Prihoda J, et al. Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom[J]. New Phytol, 2019, 221(3):1303-1316.
doi: 10.1111/nph.15479 pmid: 30216452 |
[20] |
Hao J, Li X, Xu G, et al. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense[J]. Food Chem, 2019, 286:329-337.
doi: 10.1016/j.foodchem.2019.02.027 URL |
[21] |
Vicentini TM, Cavalheiro AH, Dechandt CRP, et al. Aluminum directly inhibits alternative oxidase pathway and changes metabolic and redox parameters on Jatropha curcas cell culture[J]. Plant Physiol Biochem, 2019, 136:92-97.
doi: 10.1016/j.plaphy.2019.01.012 URL |
[22] |
Ostroukhova M, Zalutskaya Z, Ermilova E. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii[J]. Eur J Protistol, 2017, 58:1-8.
doi: S0932-4739(16)30157-2 pmid: 28088729 |
[23] | 赵晓宇, 孙立娇, 郎绍裕, 等. 植物呼吸作用关键基因交替氧化酶的研究进展[J]. 北方园艺, 2020(14):144-150. |
Zhao XY, Sun LJ, Lang SY, et al. Research progress on AOX playing a key gene of plant respiration[J]. North Hortic, 2020(14):144-150. | |
[24] | 王振华, 刘文国, 高世斌, 等. 玉米种业的昨天、今天和明天[J]. 中国畜牧业, 2021(19):26-32. |
Wang ZH, Liu WG, Gao SB, et al. Past, now and future of corn seed industry[J]. China Animal Ind, 2021(19):26-32. | |
[25] | 赵晓宇. 欧李ChAOX2基因参与抗盐功能的初步研究[D]. 哈尔滨: 东北林业大学, 2020. |
Zhao XY. The preliminary study in the function of ChAOX2 gene on salt resistance in Cerasus humilis[D]. Harbin: Northeast Forestry University, 2020. | |
[26] |
Kim JY, Lee HJ, Jung HJ, et al. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions[J]. Planta, 2010, 232(6):1447-1454.
doi: 10.1007/s00425-010-1267-x URL |
[27] |
Fiorani F, Umbach AL, Siedow JN. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants[J]. Plant Physiol, 2005, 139(4):1795-1805.
pmid: 16299170 |
[28] | Kong J, Gong JM, Zhang ZG, et al. A new AOX homologous gene OsIM1 from rice(Oryza sativa L.)with an alternative splicing mechanism under salt stress[J]. Theor Appl Genet, 2003, 107(2):326-331. |
[29] |
Millar H, Considine MJ, Day DA, et al. Unraveling the role of mitochondria during oxidative stress in plants[J]. IUBMB Life, 2001, 51(4):201-205.
pmid: 11569913 |
[30] |
Umbach AL, Fiorani F, Siedow JN. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue[J]. Plant Physiol, 2005, 139(4):1806-1820.
pmid: 16299171 |
[31] | Purvis AC. Role of the alternative oxidase in limiting superoxide production by plant mitochondria[J]. Physiol Plant, 1997, 100(1):165-170. |
[32] |
Ding CQ, Ng S, Wang L, et al. Genome-wide identification and characterization of ALTERNATIVE OXIDASE genes and their response under abiotic stresses in Camellia sinensis(L.)O. Kuntze[J]. Planta, 2018, 248(5):1231-1247.
doi: 10.1007/s00425-018-2974-y URL |
[1] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[2] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[3] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[4] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[5] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[6] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[7] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[8] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[9] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[10] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[11] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[12] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[13] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[14] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[15] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||