生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 31-39.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1589
王晨晨1(), 张凡丽1, 陈珮琪1, 翁思瑶1, 王慧芳1, 崔小娟1,2()
收稿日期:
2021-12-23
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
王晨晨,女,硕士研究生,研究方向:鱼类遗传与育种;E-mail: 基金资助:
WANG Chen-chen1(), ZHANG Fan-li1, CHEN Pei-qi1, WENG Si-yao1, WANG Hui-fang1, CUI Xiao-juan1,2()
Received:
2021-12-23
Published:
2022-07-26
Online:
2022-08-09
摘要:
DNA甲基转移酶是参与表观遗传修饰的重要蛋白家族。哺乳动物DNA甲基转移酶主要包括DNMT1、DNMT2、DNMT3A、DNMT3B和DNMT3L,其中,DNMT1、DNMT3A和DNMT3B可催化甲基转移至胞嘧啶第五位碳原子上,参与早期胚胎发育、生殖细胞发生、学习记忆、疾病发生等生物学过程。近年来,随着对DNA甲基化研究的不断深入,DNA甲基转移酶的作用机制受到科学工作者的广泛关注。该文从哺乳动物DNA甲基转移酶的结构特点、DNA甲基化的动态调节以及DNA甲基转移酶在个体发育和疾病发生中的作用等方面进行了综述。
王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39.
WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3[J]. Biotechnology Bulletin, 2022, 38(7): 31-39.
图3 DNA甲基化的动态调节 哺乳动物DNA甲基化由DNMTs建立和维持,DNA去甲基化包括:①被动去甲基化,DNA复制或参与DNA甲基化调节的酶缺失,可能使DNA发生被动去甲基化;②主动去甲基化:TETs参与DNA主动去甲基化过程,可将5mC依次氧化为5hmC、5fC和5caC。5fC和5caC在TDG的作用下参与BER途径,最终形成未被修饰的胞嘧啶
Fig. 3 Dynamic regulation of DNA methylation DNA methylation is established and maintained by DNMTs in mammalian. There are two pathways for DNA demethylation:1)passive dilution,i.e.,DNA replication or loss of enzymes participating in the dynamic regulation of DNA methylation may be involved in DNA demethylation;2)active demethylation,i.e.,TETs are involved in active DNA demethylation,which are successively oxidize 5mC to 5hmC,5fC and 5caC. Under the action of thymine DNA Glycosylase(TDG),5fC and 5caC participate in the base excision repair(BER)pathway,converted to unmodified cytosine eventually
[1] |
Sasaki K, Hara S, Yamakami R, et al. Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice[J]. Mol Reprod Dev, 2019, 86(6):614-623.
doi: 10.1002/mrd.23137 URL |
[2] |
von Meyenn F, Iurlaro M, Habibi E, et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells[J]. Mol Cell, 2016, 62(6):983.
doi: 10.1016/j.molcel.2016.06.005 URL |
[3] |
Ren WD, Gao LF, Song JK. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation[J]. Genes, 2018, 9(12):620.
doi: 10.3390/genes9120620 URL |
[4] |
Spaziano A, Cantone DI. X-chromosome reactivation:a concise review[J]. Biochem Soc Trans, 2021, 49(6):2797-2805.
doi: 10.1042/BST20210777 URL |
[5] |
Baubec T, Colombo DF, Wirbelauer C, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation[J]. Nature, 2015, 520(7546):243-247.
doi: 10.1038/nature14176 URL |
[6] |
Wang CC, Abu-Amer Y, O’Keefe RJ, et al. Loss of Dnmt3b in chondrocytes leads to delayed endochondral ossification and fracture repair[J]. J Bone Miner Res, 2018, 33(2):283-297.
doi: 10.1002/jbmr.3305 URL |
[7] |
Guan ZY, Zhang J, Song SH, et al. Promoter methylation and expression of TIMP3 gene in gastric cancer[J]. Diagn Pathol, 2013, 8:110.
doi: 10.1186/1746-1596-8-110 URL |
[8] |
Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers[J]. Nat Med, 1995, 1(7):686-692.
pmid: 7585152 |
[9] |
Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers[J]. Cancer Res, 2006, 66(17):8462-9468.
pmid: 16951157 |
[10] |
Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases(DNMTs)in oocytes and early embryos[J]. Biochimie, 2015, 116:103-113.
doi: 10.1016/j.biochi.2015.06.019 URL |
[11] | Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2):81-92. |
[12] |
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm[J]. Nucleic Acids Res, 2016, 44(18):8556-8575.
pmid: 27521372 |
[13] |
Mohan KN, Ding F, Chaillet JR. Distinct roles of DMAP1 in mouse development[J]. Mol Cell Biol, 2011, 31(9):1861-1869.
doi: 10.1128/MCB.01390-10 pmid: 21383065 |
[14] |
Iida T, Suetake I, Tajima S, et al. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA[J]. Genes Cells, 2002, 7(10):997-1007.
doi: 10.1046/j.1365-2443.2002.00584.x URL |
[15] |
Guo X, Wang L, Li J, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A[J]. Nature, 2015, 517(7536):640-644.
doi: 10.1038/nature13899 URL |
[16] |
Zeng Y, Chen TP. DNA methylation reprogramming during mammalian development[J]. Genes, 2019, 10(4):257.
doi: 10.3390/genes10040257 URL |
[17] |
Chen ZY, Zhang Y. Role of mammalian DNA methyltransferases in development[J]. Annu Rev Biochem, 2020, 89:135-158.
doi: 10.1146/annurev-biochem-103019-102815 URL |
[18] |
Takeshita K, Suetake I, Yamashita E, et al. Structural insight into maintenance methylation by mouse DNA methyltransferase 1(Dnmt1)[J]. Proc Natl Acad Sci USA, 2011, 108(22):9055-9059.
doi: 10.1073/pnas.1019629108 URL |
[19] |
Yarychkivska O, Shahabuddin Z, Comfort N, et al. BAH domains and a histone-like motif in DNA methyltransferase 1(DNMT1)regulate de novo and maintenance methylation in vivo[J]. J Biol Chem, 2018, 293(50):19466-19475.
doi: 10.1074/jbc.RA118.004612 pmid: 30341171 |
[20] | Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation[J]. Biochim Biophys Acta, 2014, 1839(12):1362-1372. |
[21] |
Song JK, Rechkoblit O, Bestor TH, et al. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation[J]. Science, 2011, 331(6020):1036-1040.
doi: 10.1126/science.1195380 URL |
[22] |
Barau J, Teissandier A, Zamudio N, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity[J]. Science, 2016, 354(6314):909-912.
pmid: 27856912 |
[23] |
Ge YZ, Pu MT, Gowher H, et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain[J]. J Biol Chem, 2004, 279(24):25447-25454.
doi: 10.1074/jbc.M312296200 URL |
[24] |
Dhayalan A, Rajavelu A, Rathert P, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation[J]. J Biol Chem, 2010, 285(34):26114-26120.
doi: 10.1074/jbc.M109.089433 URL |
[25] |
Chen TP, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin[J]. Mol Cell Biol, 2004, 24(20):9048-9058.
doi: 10.1128/MCB.24.20.9048-9058.2004 URL |
[26] | Kibe K, Shirane K, Ohishi H, et al. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes[J]. PLoS Genet, 2021, 17(5):e1009570. |
[27] |
Sendžikaitė G, Hanna CW, Stewart-Morgan KR, et al. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice[J]. Nat Commun, 2019, 10(1):1884.
doi: 10.1038/s41467-019-09713-w pmid: 31015495 |
[28] |
Otani J, Nankumo T, Arita K, et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain[J]. EMBO Rep, 2009, 10(11):1235-1241.
doi: 10.1038/embor.2009.218 URL |
[29] |
Zhang YY, Jurkowska R, Soeroes S, et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail[J]. Nucleic Acids Res, 2010, 38(13):4246-4253.
doi: 10.1093/nar/gkq147 URL |
[30] |
Li BZ, Huang Z, Cui QY, et al. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase[J]. Cell Res, 2011, 21(8):1172-1181.
doi: 10.1038/cr.2011.92 URL |
[31] |
Saravanaraman P, Selvam M, Ashok C, et al. De novo methyltransferases:potential players in diseases and new directions for targeted therapy[J]. Biochimie, 2020, 176:85-102.
doi: S0300-9084(20)30158-9 pmid: 32659446 |
[32] |
Gowher H, Jeltsch A. Mammalian DNA methyltransferases:new discoveries and open questions[J]. Biochem Soc Trans, 2018, 46(5):1191-1202.
doi: 10.1042/BST20170574 URL |
[33] |
Lukashevich OV, Cherepanova NA, Jurkovska RZ, et al. Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity[J]. BMC Biochem, 2016, 17:7.
doi: 10.1186/s12858-016-0064-y pmid: 27001594 |
[34] |
Fatemi M, Hermann A, Pradhan S, et al. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA[J]. J Mol Biol, 2001, 309(5):1189-1199.
pmid: 11399088 |
[35] |
Margot JB, Ehrenhofer-Murray AE, Leonhardt H. Interactions within the mammalian DNA methyltransferase family[J]. BMC Mol Biol, 2003, 4:7.
pmid: 12777184 |
[36] |
Xu TH, Liu MM, Zhou XE, et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B[J]. Nature, 2020, 586(7827):151-155.
doi: 10.1038/s41586-020-2747-1 URL |
[37] |
Yarychkivska O, Tavana O, Gu W, et al. Independent functions of DNMT1 and USP7 at replication foci[J]. Epigenetics Chromatin, 2018, 11(1):9.
doi: 10.1186/s13072-018-0179-z pmid: 29482658 |
[38] |
Bronner C, Alhosin M, Hamiche A, et al. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns[J]. Genes, 2019, 10(1):65.
doi: 10.3390/genes10010065 URL |
[39] |
Ren WD, Fan HT, Grimm SA, et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation[J]. Nat Commun, 2021, 12(1):2490.
doi: 10.1038/s41467-021-22665-4 URL |
[40] |
Kent B, Magnani E, Walsh MJ, et al. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development[J]. Dev Biol, 2016, 412(1):99-113.
doi: 10.1016/j.ydbio.2016.01.036 URL |
[41] |
Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3):247-257.
doi: 10.1016/s0092-8674(00)81656-6 pmid: 10555141 |
[42] |
Gujar H, Weisenberger DJ, Liang GN. The roles of human DNA methyltransferases and their isoforms in shaping the epigenome[J]. Genes, 2019, 10(2):172.
doi: 10.3390/genes10020172 URL |
[43] |
Wu H, Zhang Y. Reversing DNA methylation:mechanisms, genomics, and biological functions[J]. Cell, 2014, 156(1/2):45-68.
doi: 10.1016/j.cell.2013.12.019 URL |
[44] |
Shi JJ, Xu JF, Chen YE, et al. The concurrence of DNA methylation and demethylation is associated with transcription regulation[J]. Nat Commun, 2021, 12(1):5285.
doi: 10.1038/s41467-021-25521-7 URL |
[45] |
He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA[J]. Science, 2011, 333(6047):1303-1307.
doi: 10.1126/science.1210944 URL |
[46] |
Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine:potential implications for active demethylation of CpG sites[J]. J Biol Chem, 2011, 286(41):35334-35338.
doi: 10.1074/jbc.C111.284620 URL |
[47] |
Zhang L, Lu XY, Lu JY, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA[J]. Nat Chem Biol, 2012, 8(4):328-330.
doi: 10.1038/nchembio.914 URL |
[48] |
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis[J]. Biomark Res, 2017, 5:1.
doi: 10.1186/s40364-017-0081-z pmid: 28127428 |
[49] |
Cui D, Xu XR. DNA methyltransferases, DNA methylation, and age-associated cognitive function[J]. Int J Mol Sci, 2018, 19(5):1315.
doi: 10.3390/ijms19051315 URL |
[50] |
Song N, Endo D, Song B, et al. 5-aza-2’-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases[J]. Toxicology, 2016, 361/362:62-72.
doi: 10.1016/j.tox.2016.07.005 URL |
[51] |
Song HP, Chen LJ, Liu W, et al. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTENgene promoter methylation[J]. Cell Death Dis, 2021, 12(5):440.
doi: 10.1038/s41419-021-03637-4 URL |
[52] |
Yu J, Qin B, Moyer AM, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine[J]. J Clin Invest, 2018, 128(6):2376-2388.
doi: 10.1172/JCI97924 URL |
[53] |
Singh RK, Mallela RK, Hayes A, et al. Dnmt1, Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian Retina[J]. Exp Eye Res, 2017, 159:132-146.
doi: 10.1016/j.exer.2016.11.014 URL |
[54] |
Smith AM, LaValle TA, Shinawi M, et al. Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome[J]. Nat Commun, 2021, 12(1):4549.
doi: 10.1038/s41467-021-24800-7 URL |
[55] |
Venney D, Mohd-Sarip A, Mills KI. The impact of epigenetic modifications in myeloid malignancies[J]. Int J Mol Sci, 2021, 22(9):5013.
doi: 10.3390/ijms22095013 URL |
[56] |
Villalba-Benito L, Torroglosa A, Fernández RM, et al. Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease[J]. Sci Rep, 2017, 7(1):6221.
doi: 10.1038/s41598-017-06539-8 pmid: 28740121 |
[57] | Hagihara Y, Asada S, Maeda T, et al. Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells[J]. PLoS Genet, 2021, 17(6):e1009646. |
[58] |
Nowialis P, Lopusna K, Opavska J, et al. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions[J]. Nat Commun, 2019, 10(1):4374.
doi: 10.1038/s41467-019-12355-7 pmid: 31558711 |
[59] |
Lei H, Oh SP, Okano M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells[J]. Development, 1996, 122(10):3195-3205.
doi: 10.1242/dev.122.10.3195 pmid: 8898232 |
[60] |
Liao J, Karnik R, Gu HC, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells[J]. Nat Genet, 2015, 47(5):469-478.
doi: 10.1038/ng.3258 |
[61] |
Hirasawa R, Chiba H, Kaneda M, et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development[J]. Genes Dev, 2008, 22(12):1607-1616.
doi: 10.1101/gad.1667008 URL |
[62] |
Ding F, Chaillet JR. In vivo stabilization of the Dnmt1(cytosine-5)- methyltransferase protein[J]. Proc Natl Acad Sci USA, 2002, 99(23):14861-14866.
doi: 10.1073/pnas.232565599 URL |
[63] | Dan JM, Chen TP. Genetic studies on mammalian DNA methyltransferases[J]. Adv Exp Med Biol, 2016, 945:123-150. |
[64] |
Lyon MF. Gene action in the X-chromosome of the mouse(Mus musculus L. )[J]. Nature, 1961, 190:372-373.
doi: 10.1038/190372a0 URL |
[65] | Dossin F, Heard E. The molecular and nuclear dynamics of X-chromosome inactivation[J]. Cold Spring Harb Perspect Biol, 2021:2021 Jul 26;a040196. |
[66] |
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos[J]. Genes Dev, 2014, 28(8):812-828.
doi: 10.1101/gad.234294.113 URL |
[67] |
Haggerty C, Kretzmer H, Riemenschneider C, et al. Dnmt1 has de novo activity targeted to transposable elements[J]. Nat Struct Mol Biol, 2021, 28(7):594-603.
doi: 10.1038/s41594-021-00603-8 pmid: 34140676 |
[68] |
Li YF, Zhang ZQ, Chen JY, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J]. Nature, 2018, 564(7734):136-140.
doi: 10.1038/s41586-018-0751-5 URL |
[69] |
Han LS, Ren C, Zhang J, et al. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development[J]. Cell Discov, 2019, 5:9.
doi: 10.1038/s41421-019-0081-2 URL |
[70] |
Tse JWT, Jenkins LJ, Chionh F, et al. Aberrant DNA methylation in colorectal cancer:what should we target?[J]. Trends Cancer, 2017, 3(10):698-712.
doi: 10.1016/j.trecan.2017.08.003 URL |
[71] |
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts[J]. Nature, 1983, 301(5895):89-92.
doi: 10.1038/301089a0 URL |
[72] |
Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science, 2003, 300(5618):489-492.
doi: 10.1126/science.1083558 URL |
[73] |
Pathania R, Ramachandran S, Elangovan S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis[J]. Nat Commun, 2015, 6:6910.
doi: 10.1038/ncomms7910 URL |
[74] |
Catteau A, Harris WH, Xu CF, et al. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer:correlation with disease characteristics[J]. Oncogene, 1999, 18(11):1957-1965.
doi: 10.1038/sj.onc.1202509 pmid: 10208417 |
[75] |
Sun WL, Ma G, Zhang L, et al. DNMT3A-mediated silence in ADAMTS9 expression is restored by RNF180 to inhibit viability and motility in gastric cancer cells[J]. Cell Death Dis, 2021, 12(5):428.
doi: 10.1038/s41419-021-03628-5 URL |
[76] |
Wong CC, Kang W, Xu JY, et al. Prostaglandin E 2 induces DNA hypermethylation in gastric cancer in vitro and in vivo[J]. Theranostics, 2019, 9(21):6256-6268.
doi: 10.7150/thno.35766 URL |
[77] |
Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma[J]. Cancer Lett, 2006, 233(2):271-278.
doi: 10.1016/j.canlet.2005.03.017 URL |
[78] |
Lin XX, Lian GH, Peng SF, et al. Reversing epigenetic alterations caused by alcohol:a promising therapeutic direction for alcoholic liver disease[J]. Alcohol Clin Exp Res, 2018, 42(10):1863-1873.
doi: 10.1111/acer.13863 URL |
[79] |
Lomberk GA, Iovanna J, Urrutia R. The promise of epigenomic therapeutics in pancreatic cancer[J]. Epigenomics, 2016, 8(6):831-842.
doi: 10.2217/epi-2015-0016 pmid: 27337224 |
[80] |
Shrivastava S, Ray RM, Holguin L, et al. Exosome-mediated stable epigenetic repression of HIV-1[J]. Nat Commun, 2021, 12(1):5541.
doi: 10.1038/s41467-021-25839-2 pmid: 34545097 |
[81] |
Shi JN, Song SP, Li SX, et al. TNF-α/NF-κB signaling epigenetically represses PSD4 transcription to promote alcohol-related hepatocellular carcinoma progression[J]. Cancer Med, 2021, 10(10):3346-3357.
doi: 10.1002/cam4.3832 URL |
[82] |
Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation[J]. Neuron, 2007, 53(6):857-869.
doi: 10.1016/j.neuron.2007.02.022 URL |
[83] |
Zhang HQ, Wang JY, Li ZF, et al. DNA methyltransferase 1 is dysregulated in Parkinson’s disease via mediation of miR-17[J]. Mol Neurobiol, 2021, 58(6):2620-2633.
doi: 10.1007/s12035-021-02298-w URL |
[84] |
Morris MJ, Adachi M, Na ES, et al. Selective role for DNMT3a in learning and memory[J]. Neurobiol Learn Mem, 2014, 115:30-37.
doi: 10.1016/j.nlm.2014.06.005 URL |
[85] |
Yu NW, Liu J, Yi G, et al. DNA methylation is necessary for erythropoietin to improve spatial learning and memory in SAMP8 mice[J]. Exp Gerontol, 2015, 69:111-115.
doi: 10.1016/j.exger.2015.06.009 URL |
[86] | Córdova-Palomera A, Fatjó-Vilas M, Kebir O, et al. Polymorphic variation in the epigenetic gene DNMT3B modulates the environmental impact on cognitive ability:a twin study[J]. Eur Psychiatry, 2015, 30(2):303-308. |
[87] |
Gong ZT, Zhou Q. Dnmt3a in the dorsal dentate gyrus is a key regulator of fear renewal[J]. Sci Rep, 2018, 8(1):5093.
doi: 10.1038/s41598-018-23533-w URL |
[88] | Park YJ, Lee S, Lim S, et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics[J]. Proc Natl Acad Sci USA, 2021, 118(11):e2021073118. |
[89] |
Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density[J]. Cell Metab, 2009, 10(3):189-198.
doi: 10.1016/j.cmet.2009.07.011 URL |
[90] |
Kim AY, Park YJ, Pan XB, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance[J]. Nat Commun, 2015, 6:7585.
doi: 10.1038/ncomms8585 URL |
[91] |
Zhang Q, Yin SS, Liu L, et al. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice[J]. Sci Rep, 2016, 6:34597.
doi: 10.1038/srep34597 pmid: 27703201 |
[92] |
Zhang Q, Liu L, Lin WJ, et al. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease[J]. Kidney Int, 2017, 91(1):144-156.
doi: S0085-2538(16)30426-4 pmid: 27692562 |
[93] |
Yin SS, Zhang Q, Yang J, et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(7):1207-1216.
doi: 10.1016/j.bbamcr.2017.03.002 URL |
[94] |
Zhu XB, Chen F, Lu K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice[J]. Ann Rheum Dis, 2019, 78(10):1420-1429.
doi: 10.1136/annrheumdis-2018-214940 URL |
[1] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[2] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[3] | 崔学强, 黄昌艳, 邓杰玲, 李先民, 李秀玲, 张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析[J]. 生物技术通报, 2023, 39(6): 141-148. |
[4] | 李托, 李陇平, 屈雷. 有尾噬菌体的结构及其受体研究进展[J]. 生物技术通报, 2023, 39(6): 88-101. |
[5] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[6] | 周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62. |
[7] | 涂晓媛, 褚路路, 王冕, 陈炳智, 江玉姬. 珊瑚状猴头菇多糖的提取及其体外抗氧化活性分析[J]. 生物技术通报, 2023, 39(12): 276-286. |
[8] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[9] | 陈泉冰, 曹伟洁, 李春, 吕波. GH79家族糖苷水解酶分子进化关系和蛋白结构研究[J]. 生物技术通报, 2023, 39(1): 104-114. |
[10] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[11] | 石成龙, 汪锡武, 李安琪, 钱森和, 王洲, 赵世光, 刘艳, 薛正莲. ε-聚赖氨酸对阪崎克罗诺杆菌细胞结构与生物被膜形成的影响[J]. 生物技术通报, 2022, 38(9): 147-157. |
[12] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[13] | 刘理慧, 储锦华, 隋雨欣, 陈杨, 程古月. 沙门氏菌中主要毒力因子的研究进展[J]. 生物技术通报, 2022, 38(9): 72-83. |
[14] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[15] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||