生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 28-34.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0384
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
收稿日期:
2022-03-30
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
胡功政,男,博士,教授,研究方向:动物源细菌耐药性与新兽药研制;E-mail: 基金资助:
HU Gong-zheng(), CUI Xiao-die, ZHAI Ya-jun, HE Dan-dan
Received:
2022-03-30
Published:
2022-09-26
Online:
2022-10-11
摘要:
黏菌素(colistin,COL)目前被认为是治疗多重耐药(multidrug-resistant,MDR)革兰氏阴性菌感染的最后一道防线。而随着COL使用的增长,世界范围内细菌COL耐药性也日益增长。研制具有新作用靶点的新抗菌药异常艰难,而逆转耐药性的联合用药是与MDR细菌斗争的经济有效策略。抗生素佐药针对细菌的非必须功能,并增强抗生素活性,可提供经济有效的方法逆转细菌耐药性。本文在概述COL作用机制、细菌耐药机制基础上,重点论述佐药对细菌COL耐药性的逆转作用及其逆转机制。目前已报道的COL耐药性逆转佐药有60余种,细菌被膜损害、外排泵机制、mcr-1基因的表达水平降低或MCR-1蛋白抑制被证明是重要的逆转机制。对COL耐药性逆转及逆转机制研究存在的问题进行了分析,并对其发展方向进行了展望。高效逆转佐药筛选、逆转作用的量效关系及其深入的机制研究,将是未来重要的发展方向。
胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34.
HU Gong-zheng, CUI Xiao-die, ZHAI Ya-jun, HE Dan-dan. Research Progress in Colistin(COL)Resistance in Bacterial and Its Reversal Mechanism[J]. Biotechnology Bulletin, 2022, 38(9): 28-34.
图1 由脂多糖(LPS)修饰介导的沙门菌对黏菌素的一般耐药机制 双组分信号系统PhoQP激活pmrD的表达,PmrD激活PmrA,PmrA激活cptA、pmr和arn操纵子。cptA与eptB都修饰了LPS的核心区。产物arn代替了L-Ara4N,mcr-基因和产物pmr产生的pEtN替代了LPS的类脂A中的磷酸基团,外膜的净电荷发生变化
Fig. 1 General mechanism of Salmonella resistance to COL mediated by lipopolysaccharide(LPS)modification The TCS PhoQP activates the expressions of pmrD,PmrD activates PmrA,and PmrA activates cptA,pmr and arn operons. Both cptA and eptB modified the core region of LPS. The product arn replaces L-Ara4N,and the pEtN produced by mcr- gene and product pmr replaces the phosphate group in lipid A of LPS,the net charge of the OM has changed
图2 逆转革兰阴性菌黏菌素耐药性的分子机制 与COL作用机制相关的逆转机制:a. 损害细菌外膜、b. 增强氧化损伤;与COL耐药机制相关的逆转机制:c. 抑制mcr-1的表达、d. 抑制MCR-1蛋白、e. 下调TCS pmrAB表达、f. 抑制多药外排泵;g. 抑制外膜蛋白OmpA的表达;h. 综合逆转机制
Fig. 2 Molecular mechanism of reversing COL resistance in gram negative bacteria The reversal mechanisms related to the action mechanism of COL. a. damage the bacterial OM;b. enhances oxidative damage. The reversal mechanisms related to COL resistance mechanism;c. inhibition of mcr-1 expression;d. inhibition of MCR-1 protein;e. down regulation of TCS pmrAB expression;f. inhibition of multidrug efflux pump;g. inhibit the expression of OmpA protein;h. comprehensive reversal mechanism
[1] |
Song MR, Liu Y, Huang XY, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens[J]. Nat Microbiol, 2020, 5(8):1040-1050.
doi: 10.1038/s41564-020-0723-z pmid: 32424338 |
[2] |
Liu Y, Tong ZW, Shi JR, et al. Reversion of antibiotic resistance in multidrug-resistant pathogens using non-antibiotic pharmaceutical benzydamine[J]. Commun Biol, 2021, 4(1):1328.
doi: 10.1038/s42003-021-02854-z pmid: 34824393 |
[3] |
Jia YQ, Yang BQ, Shi JR, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force[J]. Pharmacol Res, 2022, 175:105978.
doi: 10.1016/j.phrs.2021.105978 URL |
[4] |
Peyclit L, Baron SA, Rolain JM. Drug repurposing to fight colistin and carbapenem-resistant bacteria[J]. Front Cell Infect Microbiol, 2019, 9:193.
doi: 10.3389/fcimb.2019.00193 URL |
[5] |
Ayoub MC. Polymyxins and bacterial membranes:a review of antibacterial activity and mechanisms of resistance[J]. Membranes, 2020, 10(8):181.
doi: 10.3390/membranes10080181 URL |
[6] |
El-Sayed Ahmed M, Zhong LL, Shen C, et al. Colistin and its role in the Era of antibiotic resistance:an extended review(2000-2019)[J]. Emerg Microbes Infect, 2020, 9(1):868-885.
doi: 10.1080/22221751.2020.1754133 URL |
[7] | Yu ZL, Qin WR, Lin JX, et al. Antibacterial mechanisms of polymyxin and bacterial resistance[J]. Biomed Res Int, 2015, 2015:679109. |
[8] |
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance:acquired and intrinsic resistance in bacteria[J]. Front Microbiol, 2014, 5:643.
doi: 10.3389/fmicb.2014.00643 pmid: 25505462 |
[9] |
Baron S, Hadjadj L, Rolain JM, et al. Molecular mechanisms of polymyxin resistance:knowns and unknowns[J]. Int J Antimicrob Agents, 2016, 48(6):583-591.
doi: 10.1016/j.ijantimicag.2016.06.023 URL |
[10] |
Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16(2):161-168.
doi: 10.1016/S1473-3099(15)00424-7 URL |
[11] |
Wang CC, Feng Y, Liu LN, et al. Identification of novel mobile colistin resistance gene mcr-10[J]. Emerg Microbes Infect, 2020, 9(1):508-516.
doi: 10.1080/22221751.2020.1732231 URL |
[12] |
Son SJ, Huang RJ, Squire CJ, et al. MCR-1:a promising target for structure-based design of inhibitors to tackle polymyxin resistance[J]. Drug Discov Today, 2019, 24(1):206-216.
doi: 10.1016/j.drudis.2018.07.004 URL |
[13] |
Sun J, Li XP, Fang LX, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid:persistence of colistin resistance in Escherichia coli[J]. Int J Antimicrob Agents, 2018, 51(6):842-847.
doi: 10.1016/j.ijantimicag.2018.01.007 URL |
[14] |
Walsh TR, Wu YN. China bans colistin as a feed additive for animals[J]. Lancet Infect Dis, 2016, 16(10):1102-1103.
doi: S1473-3099(16)30329-2 pmid: 27676338 |
[15] |
Baron SA, Rolain JM. Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1plasmid-mediated colistin-resistant strains and Gram-negative bacteria[J]. J Antimicrob Chemother, 2018, 73(7):1862-1871.
doi: 10.1093/jac/dky134 URL |
[16] | 翟亚军, 梁军, 魏单单, 等. CpxR对鼠伤寒沙门菌的黏菌素耐药相关基因pmrB和phoQ调控作用的研究[J]. 畜牧兽医学报, 2019, 50(6):1284-1291. |
Zhai YJ, Liang J, Wei DD, et al. Regulative mechanisms of CpxR on the colistin susceptibility of Salmonella enterica serovar typhimurium through the colistin resistance-related genes pmrB and phoQ[J]. Chin J Animal Vet Sci, 2019, 50(6):1284-1291. | |
[17] |
Zhai YJ, Huang H, Liu JH, et al. CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin[J]. J Antimicrob Chemother, 2018, 73(11):3016-3024.
doi: 10.1093/jac/dky320 URL |
[18] |
Zhai YJ, Sun HR, Luo XW, et al. CpxR regulates the colistin susceptibility of Salmonella typhimurium by a multitarget mechanism[J]. J Antimicrob Chemother, 2020, 75(10):2780-2786.
doi: 10.1093/jac/dkaa233 URL |
[19] |
Zhang MK, Zhang MY, Liu SB, et al. Double deletion of cpxR and tolC significantly increases the susceptibility of Salmonella enterica serovar Typhimurium to colistin[J]. J Antimicrob Chemother, 2021, 76(12):3168-3174.
doi: 10.1093/jac/dkab332 URL |
[20] |
Telke AA, Olaitan AO, Morand S, et al. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump[J]. J Antimicrob Chemother, 2017, 72(10):2715-2721.
doi: 10.1093/jac/dkx215 pmid: 29091215 |
[21] |
Stokes JM, MacNair CR, Ilyas B, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance[J]. Nat Microbiol, 2017, 2:17028.
doi: 10.1038/nmicrobiol.2017.28 pmid: 28263303 |
[22] |
Ayerbe-Algaba R, Gil-Marqués ML, Miró-Canturri A, et al. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant gram-negative bacilli[J]. Int J Antimicrob Agents, 2019, 54(4):507-512.
doi: 10.1016/j.ijantimicag.2019.07.006 URL |
[23] | Domalaon R, Okunnu O, Zhanel GG, et al. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant gram-negative bacilli[J]. J Antibiot(Tokyo), 2019, 72(8):605-616. |
[24] |
Miró-Canturri A, Ayerbe-Algaba R, Villodres ÁR, et al. Repositioning rafoxanide to treat Gram-negative bacilli infections[J]. J Antimicrob Chemother, 2020, 75(7):1895-1905.
doi: 10.1093/jac/dkaa103 pmid: 32240294 |
[25] |
Ayerbe-Algaba R, Gil-Marqués ML, Jiménez-Mejías ME, et al. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2018, 8:348.
doi: 10.3389/fcimb.2018.00348 URL |
[26] |
MacNair CR, Stokes JM, Carfrae LA, et al. Overcoming mcr-1mediated colistin resistance with colistin in combination with other antibiotics[J]. Nat Commun, 2018, 9(1):458.
doi: 10.1038/s41467-018-02875-z pmid: 29386620 |
[27] |
Liu Y, Jia YQ, Yang KN, et al. Melatonin overcomes MCR-mediated colistin resistance in gram-negative pathogens[J]. Theranostics, 2020, 10(23):10697-10711.
doi: 10.7150/thno.45951 pmid: 32929375 |
[28] | Zhou YL, Liu S, Wang TT, et al. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B[J]. Antimicrob Agents Chemother, 2018, 62(4):e02146-e02117. |
[29] |
Loose M, Naber KG, Hu YM, et al. Serum bactericidal activity of colistin and azidothymidine combinations against mcr-1-positive colistin-resistant Escherichia coli[J]. Int J Antimicrob Agents, 2018, 52(6):783-789.
doi: 10.1016/j.ijantimicag.2018.08.010 URL |
[30] |
Cannatelli A, Principato S, Colavecchio OL, et al. Synergistic activity of colistin in combination with resveratrol against colistin-resistant gram-negative pathogens[J]. Front Microbiol, 2018, 9:1808.
doi: 10.3389/fmicb.2018.01808 pmid: 30131787 |
[31] |
Sundaramoorthy NS, Mohan HM, Subramaniam S, et al. Ursolic acid inhibits colistin efflux and curtails colistin resistant Enterobacteriaceae[J]. AMB Express, 2019, 9(1):27.
doi: 10.1186/s13568-019-0750-4 pmid: 30778773 |
[32] |
Wang YM, Kong LC, Liu J, et al. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains[J]. Antimicrob Resist Infect Control, 2018, 7:17.
doi: 10.1186/s13756-018-0303-7 URL |
[33] |
Zhou YL, Wang JF, Guo Y, et al. Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive Enterobacteriaceae[J]. J Infect, 2019, 78(5):364-372.
doi: S0163-4453(19)30073-8 pmid: 30851289 |
[34] |
Dokla EME, Abutaleb NS, Milik SN, et al. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria[J]. Eur J Med Chem, 2020, 186:111850.
doi: 10.1016/j.ejmech.2019.111850 URL |
[35] |
Lan XJ, Yan HT, Lin F, et al. Design, synthesis and biological evaluation of 1-phenyl-2-(phenylamino)ethanone derivatives as novel MCR-1 inhibitors[J]. Molecules, 2019, 24(15):2719.
doi: 10.3390/molecules24152719 URL |
[36] |
Parra-Millán R, Vila-Farrés X, Ayerbe-Algaba R, et al. Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii:mechanistic analysis and in vivo efficacy[J]. J Antimicrob Chemother, 2018, 73(12):3405-3412.
doi: 10.1093/jac/dky343 pmid: 30188994 |
[37] |
Harris TL, Worthington RJ, Hittle LE, et al. Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance[J]. ACS Chem Biol, 2014, 9(1):122-127.
doi: 10.1021/cb400490k pmid: 24131198 |
[38] |
Tsai CN, MacNair CR, Cao MPT, et al. Targeting two-component systems uncovers a small-molecule inhibitor of Salmonella virulence[J]. Cell Chem Biol, 2020, 27(7):793-805. e7.
doi: 10.1016/j.chembiol.2020.04.005 URL |
[39] | Daly SM, Sturge CR, Felder-Scott CF, et al. MCR-1 inhibition with peptide-conjugated phosphorodiamidate morpholino oligomers restores sensitivity to polymyxin in Escherichia coli[J]. mBio, 2017, 8(6):e01315-e01317. |
[40] |
Yi KF, Liu SB, Liu PY, et al. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella[J]. Biomed Pharmacother, 2022, 149:112873.
doi: 10.1016/j.biopha.2022.112873 URL |
[41] | Copp JN, Pletzer D, Brown AS, et al. Mechanistic understanding enables the rational design of salicylanilide combination therapies for gram-negative infections[J]. mBio, 2020, 11(5):e02068-e02020. |
[1] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[2] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[3] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[4] | 李潇凡, 耿丹丹, 毕瑜林, 江勇, 王志秀, 常国斌, 陈国宏, 白皓. miRNA的非经典作用机制研究进展[J]. 生物技术通报, 2022, 38(12): 1-10. |
[5] | 王楠, 苏誉, 刘文杰, 封明, 毛瑜, 张新国. 植物内生菌中抗耐药微生物活性成分的研究进展[J]. 生物技术通报, 2021, 37(8): 263-274. |
[6] | 杨树萍, 张琳, 徐继林. 藻类中添加剂的应用研究进展[J]. 生物技术通报, 2020, 36(2): 178-187. |
[7] | 冯小艳,张树珍. RNAi作用机制及应用研究进展[J]. 生物技术通报, 2017, 33(5): 1-8. |
[8] | 宋铁峰, 袁颖, 王会琴, 庄春雨, 王楠, 张同存. 长链非编码RNA MALAT1的研究进展[J]. 生物技术通报, 2016, 32(1): 20-28. |
[9] | 卢倩, 弭晓菊, 崔继哲. 植物甘油醛-3-磷酸脱氢酶作用机制的研究进展[J]. 生物技术通报, 2013, 0(8): 1-6. |
[10] | 李泽, 白荷露. 小RNA 的组成和功能——三类内源小RNA 的研究概况[J]. 生物技术通报, 2013, 0(1): 25-30. |
[11] | 任怡怡;戴绍军;刘炜;. 生长素的运输及其在信号转导及植物发育中的作用[J]. , 2012, 0(03): 9-16. |
[12] | 杨光富;魏云林;. 假单胞菌研究现状及应用前景[J]. , 2011, 0(01): 37-39. |
[13] | 何菲;邹凡文;. RNA干扰技术的研究进展[J]. , 2010, 0(07): 68-72. |
[14] | 黄曦;许兰兰;黄荣韶;黄庶识;. 枯草芽孢杆菌在抑制植物病原菌中的研究进展[J]. , 2010, 0(01): 24-29. |
[15] | 冶晓芳;唐益苗;高世庆;杨颖;刘美英;王永波;赵昌平;. 植物NAC转录因子的研究进展[J]. , 2009, 0(10): 20-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||