生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 182-190.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0603
收稿日期:
2023-06-25
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
孙志宏,男,博士,研究员,研究方向:乳酸菌资源利用与开发;E-mail: sunzhihong78@163.com作者简介:
赵佳,女,硕士研究生,研究方向:乳酸菌资源利用与开发;E-mail: zhaojia_0412@163.com
基金资助:
ZHAO Jia(), ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong()
Received:
2023-06-25
Published:
2023-11-26
Online:
2023-12-20
摘要:
乳酸菌作为一种天然的抗氧化剂,其抗氧化特性一直是研究热点之一。绝大多数乳酸菌为厌氧菌或兼性厌氧菌,一般适合生长于无氧或含氧量低的环境中,部分乳酸菌菌株由于自身含有高活性的抗氧化酶及氧化还原系统而具有良好的抗氧化特性。作为一种常见的发酵微生物,乳酸菌在食品生产中不仅具有改善风味的作用,其抗氧化作用对于延长食品的保藏期具有重要意义。同样,机体的氧化应激与许多生理、病理现象密切相关,大量研究已经证实乳酸菌在缓解相关疾病方面具有益生功能。本文对乳酸菌的氧化胁迫及其应答和防御机制、提高乳酸菌抗氧化活性的技术方法及应用进行综述,旨在为深入了解乳酸菌的抗氧化机制以及开发具有良好抗氧化活性的菌株提供理论参考。
赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190.
ZHAO Jia, ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong. Advances in the Antioxidant Activities of Lactic Acid Bacteria and Their Applications[J]. Biotechnology Bulletin, 2023, 39(11): 182-190.
菌株名称 Strain | 疾病 Disease | 模型 Model | 效果 Effect | 参考文献 Reference |
---|---|---|---|---|
Lactiplantibacills plantarum AS1 | 结肠癌 | 1,2-甲基肼诱导的结肠癌大鼠 | 平均肿瘤体积减小,恢复结肠和血浆中的脂质过氧化物水平和抗氧化活性 | [ |
Limosilactobacillus reuteri | 结肠癌 | 基因敲除造模结肠癌小鼠 | 抑制癌细胞的生长,降低结直肠癌小鼠的氧化水平 | [ |
Lactobacillus salivarius REN | 口腔癌 | 4NQO诱导的口腔癌大鼠 | 有效抑制口腔癌变,保护DNA免受4NQO损伤 | [ |
Lacticaseibacillusrhamnosus GG | 肝病 | 每天酒精灌胃大鼠2次(10周) | 减轻了酒精诱导的肠道以及肝脏氧化应激和炎症 | [ |
Lactiplantibacills plantarum P8 | 高脂血症 | 饮食诱导的高脂血症大鼠 | 改善肝功能、高脂血症诱导的氧化应激 | [ |
Lacticaseibacillus paracasei F19 | 肝病 | 肝脏缺血/再灌注(I/R)损伤的肝损伤大鼠 | 恢复肠道菌群和肠屏障,降低I/R对大鼠肝脏和肠道菌群的有害影响 | [ |
Bifidobacterium animails BFM Limosilactobacillus fermentum LC40 | 高血压 | 自发性高血压大鼠 | 降低高血压大鼠主动脉NADPH氧化酶的活力 | [ |
表1 具有改善氧化应激相关疾病的益生菌
Table 1 Probiotics with improving oxidative stress-related diseases
菌株名称 Strain | 疾病 Disease | 模型 Model | 效果 Effect | 参考文献 Reference |
---|---|---|---|---|
Lactiplantibacills plantarum AS1 | 结肠癌 | 1,2-甲基肼诱导的结肠癌大鼠 | 平均肿瘤体积减小,恢复结肠和血浆中的脂质过氧化物水平和抗氧化活性 | [ |
Limosilactobacillus reuteri | 结肠癌 | 基因敲除造模结肠癌小鼠 | 抑制癌细胞的生长,降低结直肠癌小鼠的氧化水平 | [ |
Lactobacillus salivarius REN | 口腔癌 | 4NQO诱导的口腔癌大鼠 | 有效抑制口腔癌变,保护DNA免受4NQO损伤 | [ |
Lacticaseibacillusrhamnosus GG | 肝病 | 每天酒精灌胃大鼠2次(10周) | 减轻了酒精诱导的肠道以及肝脏氧化应激和炎症 | [ |
Lactiplantibacills plantarum P8 | 高脂血症 | 饮食诱导的高脂血症大鼠 | 改善肝功能、高脂血症诱导的氧化应激 | [ |
Lacticaseibacillus paracasei F19 | 肝病 | 肝脏缺血/再灌注(I/R)损伤的肝损伤大鼠 | 恢复肠道菌群和肠屏障,降低I/R对大鼠肝脏和肠道菌群的有害影响 | [ |
Bifidobacterium animails BFM Limosilactobacillus fermentum LC40 | 高血压 | 自发性高血压大鼠 | 降低高血压大鼠主动脉NADPH氧化酶的活力 | [ |
[1] | 何进, 徐思杨, 刘波, 等. 乳酸菌在农业和食品加工中的应用研究进展[J]. 微生物学杂志, 2022, 42(4): 1-11. |
He J, Xu SY, Liu B, et al. Advance on applied researches of lactic acid bacteria in agriculture and food industry[J]. J Microbiol, 2022, 42(4): 1-11. | |
[2] |
Linares DM, Gómez C, Renes E, et al. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods[J]. Front Microbiol, 2017, 8: 846.
doi: 10.3389/fmicb.2017.00846 pmid: 28572792 |
[3] | 张筠, 孟祥晨. 乳酸菌的胁迫应答及其对碳水化合物代谢的影响[J]. 中国食品学报, 2017, 17(6): 145-151. |
Zhang Y, Meng XC. Stress responses and impact of carbonhydrate metabolism in lactic acid bacteria[J]. J Chin Inst Food Sci Technol, 2017, 17(6): 145-151. | |
[4] |
Zhai ZY, Yang Y, Wang H, et al. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress[J]. Food Microbiol, 2020, 87: 103389.
doi: 10.1016/j.fm.2019.103389 URL |
[5] | 孔保华, 李悦欣, 张欢, 等. 乳酸菌抗氧化活性及其在发酵肉制品中的应用研究进展[J]. 肉类研究, 2022, 36(10): 35-42. |
Kong BH, Li YX, Zhang H, et al. Antioxidant activity of lactic acid bacteria and their application in fermented meat products: a review[J]. Meat Res, 2022, 36(10): 35-42. | |
[6] | 张会, 孙晓琛, 夏依旦·买买提, 等. 乳酸菌对羊乳酸奶体外降血糖和抗氧化功能的影响[J]. 食品工业科技, 2023, 44(18): 156-163. |
Zhang H, Sun XC, Maimaiti XYD, et al. Effects of lactic acid bacteria fermentation on hypoglycemic and antioxidant activities of goat yoghurt in vitro[J]. Sci Technol Food Ind, 2023, 44(18): 156-163. | |
[7] | 陈晓维, 温靖, 肖更生, 等. 乳酸菌混合发酵在红枣浆中的发酵特性研究[J]. 食品与发酵工业, 2023, 49(17): 174-179. |
Chen XW, Wen J, Xiao GS, et al. Fermentation characteristics of jujube pulp by mixed fermentation of lactic acid bacteria[J]. Food Ferment Ind, 2023, 49(17): 174-179. | |
[8] | 周先容, 谭仟, 母健菲, 等. 泡菜源乳酸菌的分离筛选及其对小鼠氧化应激水平的改善作用[J]. 现代食品科技, 2020, 36(9): 17-25. |
Zhou XR, Tan Q, Mu JF, et al. Isolation and screening of lactic acid bacteria from pickle and its improvement effect on oxidative stress level in mice[J]. Mod Food Sci Technol, 2020, 36(9): 17-25. | |
[9] |
Ishaq M, Khan A, Bacha AS, et al. Microbiota targeted interventions of probiotic Lactobacillus as an anti-ageing approach: a review[J]. Antioxidants, 2021, 10(12): 1930.
doi: 10.3390/antiox10121930 URL |
[10] | 赵丹, 刘平平, 李萌, 等. 乳酸菌发酵提取物保护皮肤氧化损伤的作用与机理[J]. 精细化工, 2022, 39(4): 752-760. |
Zhao D, Liu PP, Li M, et al. Effect and mechanism of lactic acid bacteria fermentation extracts to protect skin from oxidative stress damage[J]. Fine Chem, 2022, 39(4): 752-760. | |
[11] | 储蓄, 张军霞, 王晶. 动物氧化应激及其营养调控措施研究进展[J]. 畜牧兽医学报, 2021, 52(12): 3346-3356. |
Chu X, Zhang JX, Wang J. Research progress of animal oxidative stress and its nutritional regulation[J]. Acta Vet Zootechnica Sin, 2021, 52(12): 3346-3356. | |
[12] |
Lu Z, Imlay JA. A conserved motif liganding the[4Fe-4S]cluster in[4Fe-4S]fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress[J]. Redox Biol, 2019, 26: 101296.
doi: 10.1016/j.redox.2019.101296 URL |
[13] | 陈紫婷, 陈梦婷, 孙智达. 芬顿反应诱导的肉类蛋白质氧化及干预研究进展[J]. 肉类研究, 2023, 37(5): 72-80. |
Chen ZT, Chen MT, Sun ZD. Research progress on Fenton reaction-induced meat protein oxidation and its inhibition[J]. Meat Res, 2023, 37(5): 72-80. | |
[14] | 刘竟运, 林育钊, 范中奇, 等. 活性氧在采后果蔬品质劣变中的作用及其控制技术研究进展[J]. 亚热带农业研究, 2020, 16(1): 52-59. |
Liu JY, Lin YZ, Fan ZQ, et al. Research progress on the role of reactive oxygen species in quality deterioration of harvested fruits and vegetables and its control technologies[J]. Subtrop Agric Res, 2020, 16(1): 52-59. | |
[15] |
Belenky P, Ye JD, Porter CBM, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage[J]. Cell Rep, 2015, 13(5): 968-980.
doi: 10.1016/j.celrep.2015.09.059 pmid: 26565910 |
[16] | 任红立, 汪晶晶, 金三俊, 等. 妊娠后期饲粮中添加乳酸菌与酵母菌的复合菌对母猪繁殖性能、血浆脂质代谢和抗氧化能力的影响[J]. 动物营养学报, 2018, 30(4): 1457-1464. |
Ren HL, Wang JJ, Jin SJ, et al. Effects of dietary compound bacteria of Lactobacillus and yeast in late pregnancy on reproductive performance, plasma lipid metabolism and antioxidant capacity of sows[J]. Chin J Anim Nutr, 2018, 30(4): 1457-1464. | |
[17] |
Lyu CJ, Hu S, Huang J, et al. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis[J]. Int J Food Microbiol, 2016, 238: 302-310.
doi: 10.1016/j.ijfoodmicro.2016.09.023 URL |
[18] |
Kono Y, Fridovich I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum[J]. J Biol Chem, 1983, 258(10): 6015-6019.
pmid: 6853475 |
[19] |
Rochat T, Gratadoux JJ, Gruss A, et al. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk[J]. Appl Environ Microbiol, 2006, 72(8): 5143-5149.
doi: 10.1128/AEM.00482-06 URL |
[20] |
Kong LH, Xiong ZQ, Song X, et al. Enhanced antioxidant activity in Streptococcus thermophilus by high-level expression of superoxide dismutase[J]. Front Microbiol, 2020, 11: 579804.
doi: 10.3389/fmicb.2020.579804 URL |
[21] |
An HR, Zhai ZY, Yin S, et al. Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus[J]. J Agric Food Chem, 2011, 59(8): 3851-3856.
doi: 10.1021/jf200251k URL |
[22] |
Kullisaar T, Songisepp E, Aunapuu M, et al. Complete glutathione system in probiotic Lactobacillus fermentum ME-3[J]. Prikl Biokhim Mikrobiol, 2010, 46(5): 527-531.
pmid: 21058502 |
[23] | 张艺, 叶升. 还原型谷胱甘肽生理功能及其临床应用[J]. 生命的化学, 2020, 40(12): 2226-2235. |
Zhang Y, Ye S. Physiological functions and clinical applications of glutathione[J]. Chem Life, 2020, 40(12): 2226-2235. | |
[24] |
Zhang J, Fu RY, Hugenholtz J, et al. Glutathione protects Lactococcus lactis against acid stress[J]. Appl Environ Microbiol, 2007, 73(16): 5268-5275.
doi: 10.1128/AEM.02787-06 URL |
[25] |
Wang T, Lu WW, Lu SY, et al. Protective role of glutathione against oxidative stress in Streptococcus thermophilus[J]. Int Dairy J, 2015, 45: 41-47.
doi: 10.1016/j.idairyj.2015.01.015 URL |
[26] | 杨婕琳, 翟明慧, 张凡, 等. 硫氧还蛋白及硫氧还蛋白相互作用蛋白在结肠息肉癌变中的表达及意义[J]. 西部医学, 2021, 33(9): 1359-1363, 1368. |
Yang JL, Zhai MH, Zhang F, et al. The expression and significance of thioredoxin and thioredoxin-interacting protein in carcinogenesis of colon polyps[J]. Med J West China, 2021, 33(9): 1359-1363, 1368. | |
[27] |
Serrano LM, Molenaar D, Wels M, et al. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1[J]. Microb Cell Fact, 2007, 6: 29.
doi: 10.1186/1475-2859-6-29 |
[28] |
Tachon S, Brandsma JB, Yvon M. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk[J]. Appl Environ Microbiol, 2010, 76(5): 1311-1319.
doi: 10.1128/AEM.02120-09 URL |
[29] |
Naraki S, Igimi S, Sasaki Y. NADH peroxidase plays a crucial role in consuming H2O2 in Lactobacillus casei IGM394[J]. Biosci Microbiota Food Health, 2020, 39(2): 45-56.
doi: 10.12938/bmfh.19-027 URL |
[30] | 段希宇, 叶陵, 刘成国, 等. 乳酸菌的抗氧化作用机制[J]. 微生物学杂志, 2017, 37(3): 111-115. |
Duan XY, Ye L, Liu CG, et al. The antioxidative mechanism of lactic acid bacteria[J]. J Microbiol, 2017, 37(3): 111-115. | |
[31] | 程新, 赵延胜, 董英, 等. Mn2+对植物乳杆菌影响的代谢组学分析[J]. 中国食品学报, 2019, 19(2): 258-265. |
Cheng X, Zhao YS, Dong Y, et al. Metabolomics analysis of Mn2+ effect on the metabolic pathways in Lactobacillus plantarum[J]. J Chin Inst Food Sci Technol, 2019, 19(2): 258-265. | |
[32] |
Serata M, Yasuda E, Sako T. Effect of superoxide dismutase and manganese on superoxide tolerance in Lactobacillus casei strain Shirota and analysis of multiple manganese transporters[J]. Biosci Microbiota Food Health, 2018, 37(2): 31-38.
doi: 10.12938/bmfh.17-018 URL |
[33] | Wang QQ, Lai YT, Zhang H, et al. Enhancement of superoxide dismutase activity using mixed Lactobacillus casei and Saccharomyces cerevisiae cultures in simulated gastrointestinal conditions with encapsulation[J]. Biochem Eng J, 2023: 109037. |
[34] |
Wang YC, Yu RC, Chou CC. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria[J]. Food Microbiol, 2006, 23(2): 128-135.
doi: 10.1016/j.fm.2005.01.020 URL |
[35] |
Herve-Jimenez L, Guillouard I, Guedon E, et al. Postgenomic analysis of streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism[J]. Appl Environ Microbiol, 2009, 75(7): 2062-2073.
doi: 10.1128/AEM.01984-08 URL |
[36] |
Cruz AG, Castro WF, Faria JAF, et al. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds[J]. J Dairy Sci, 2012, 95(5): 2261-2269.
doi: 10.3168/jds.2011-4582 pmid: 22541455 |
[37] | Shah NP, Ding WK, Fallourd MJ, et al. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants[J]. J Food Sci, 2010, 75(5): M278-M282. |
[38] |
Gaudreau H, Champagne CP, Remondetto GE, et al. Effect of catechins on the growth of oxygen-sensitive probiotic bacteria[J]. Food Res Int, 2013, 53(2): 751-757.
doi: 10.1016/j.foodres.2012.10.014 URL |
[39] |
Lin JZ, Zou YX, Cao KL, et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei[J]. J Ind Microbiol Biotechnol, 2016, 43(5): 703-711.
doi: 10.1007/s10295-016-1752-8 URL |
[40] |
Watthanasakphuban N, Srila P, Pinmanee P, et al. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach[J]. Microb Cell Fact, 2023, 22(1): 86.
doi: 10.1186/s12934-023-02076-4 pmid: 37120528 |
[41] |
Ge QF, Pei HJ, Liu R, et al. Effects of Lactobacillus plantarum NJAU-01 from Jinhua ham on the quality of dry-cured fermented sausage[J]. LWT, 2019, 101: 513-518.
doi: 10.1016/j.lwt.2018.11.081 URL |
[42] |
Luz C, Quiles JM, Romano R, et al. Application of whey of Mozzarella di Bufala Campana fermented by lactic acid bacteria as a bread biopreservative agent[J]. Int J Food Sci Tech, 2021, 56(9): 4585-4593.
doi: 10.1111/ijfs.v56.9 URL |
[43] |
Dong XB, Qi J, Xu K, et al. Effect of lactic acid fermentation and in vitro digestion on the bioactive compounds in Chinese wolfberry(Lycium barbarum)pulp[J]. Food Biosci, 2023, 53: 102558.
doi: 10.1016/j.fbio.2023.102558 URL |
[44] |
Isas AS, Escobar F, Álvarez-Villamil E, et al. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet[J]. Food Biosci, 2023, 53: 102516.
doi: 10.1016/j.fbio.2023.102516 URL |
[45] |
van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: past, present and future[J]. Eur J Heart Fail, 2019, 21(4): 425-435.
doi: 10.1002/ejhf.1320 pmid: 30338885 |
[46] | 赵保路. 氧化应激及天然抗氧化剂对阿尔茨海默病的缓解作用[J]. 生物化学与生物物理进展, 2023, 50(5): 1144-1158. |
Zhao BL. Oxidative stress and alleviating effect of natural antioxidants on Alzheimer's disease[J]. Prog Biochem Biophys, 2023, 50(5): 1144-1158. | |
[47] | 付连花, 漆超, 何津, 等. 葡萄糖氧化酶用于癌症多模式协同治疗研究进展[J]. 中国科学: 生命科学, 2021, 51(7): 850-870. |
Fu LH, Qi C, He J, et al. Research advances in glucose oxidase-based multimodal synergistic cancer therapy[J]. Sci Sin Vitae, 2021, 51(7): 850-870.
doi: 10.1360/SSV-2019-0286 URL |
|
[48] |
Bourgonje AR, von Martels JZH, Bulthuis MLC, et al. Crohn's disease in clinical remission is marked by systemic oxidative stress[J]. Front Physiol, 2019, 10: 499.
doi: 10.3389/fphys.2019.00499 pmid: 31080419 |
[49] |
Pomacu MM, Trască MD, Pădureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis[J]. Exp Ther Med, 2021, 21(6): 602.
doi: 10.3892/etm.2021.10034 pmid: 33936259 |
[50] |
Bryukhanov AL, Klimko AI, Netrusov AI. Antioxidant properties of lactic acid bacteria[J]. Microbiology, 2022, 91(5): 463-478.
doi: 10.1134/S0026261722601439 |
[51] |
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles[J]. Redox Biol, 2017, 11: 240-253.
doi: S2213-2317(16)30342-1 pmid: 28012439 |
[52] |
Zhao TT, Wang HR, Liu ZJ, et al. Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease[J]. Antioxidants, 2023, 12(3): 769.
doi: 10.3390/antiox12030769 URL |
[53] |
Kumar RS, Kanmani P, Yuvaraj N, et al. Lactobacillus plantarum AS1 isolated from South Indian fermented food Kallappam suppress 1, 2-dimethyl hydrazine(DMH)-induced colorectal cancer in male Wistar rats[J]. Appl Biochem Biotechnol, 2012, 166(3): 620-631.
doi: 10.1007/s12010-011-9453-2 URL |
[54] |
Bell HN, Rebernick RJ, Goyert J, et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance[J]. Cancer Cell, 2022, 40(2): 185-200.e6.
doi: 10.1016/j.ccell.2021.12.001 URL |
[55] |
Zhang M, Wang F, Jiang L, et al. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquioline 1-oxide[J]. Cancer Prev Res, 2013, 6(7): 686-694.
doi: 10.1158/1940-6207.CAPR-12-0427 URL |
[56] |
Forsyth CB, Farhadi A, Jakate SM, et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis[J]. Alcohol, 2009, 43(2): 163-172.
doi: 10.1016/j.alcohol.2008.12.009 URL |
[57] |
Wang ZL, Bao Y, Zhang Y, et al. Effect of soymilk fermented with Lactobacillus plantarum P-8 on lipid metabolism and fecal microbiota in experimental hyperlipidemic rats[J]. Food Biophys, 2013, 8(1): 43-49.
doi: 10.1007/s11483-012-9282-z URL |
[58] | 赵莹, 丰义宽, 董世龙, 等. 枯草杆菌二联活菌肠溶胶囊联合枸橼酸莫沙必利治疗乙肝肝硬化合并小肠细菌过度生长疗效探究[J]. 中国中西医结合消化杂志, 2022, 30(01): 45-49. |
Zhao Y, Feng YK, Dong SL, et.al. Efficacy of bacillus subtilis combined with hepatitis Bcirrhosis complicated with mosapride citrate in intestinal bacterial the treatment of overgrowth[J]. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2022, 30(01): 45-49. | |
[59] |
Nardone G, Compare D, Liguori E, et al. Protective effects of Lactobacillus paracasei F19 in a rat model of oxidative and metabolic hepatic injury[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299(3): G669-G676.
doi: 10.1152/ajpgi.00188.2010 URL |
[60] | Robles-Vera I, Toral M, de la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids[J]. Mol Nutr Food Res, 2020, 64(6): e1900616. |
[61] |
Thushara RM, Gangadaran S, Solati Z, et al. Cardiovascular benefits of probiotics: a review of experimental and clinical studies[J]. Food Funct, 2016, 7(2): 632-642.
doi: 10.1039/c5fo01190f pmid: 26786971 |
[1] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[2] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[3] | 田静, 张建国. 植物表面乳酸菌分布研究进展[J]. 生物技术通报, 2021, 37(9): 3-10. |
[4] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[5] | 李陆萍, 梁大成. 活性氧诱发的植物亚细胞间通讯[J]. 生物技术通报, 2021, 37(5): 165-173. |
[6] | 王昭玉, 常明昌, 徐丽婧, 孟俊龙, 左宁柯, 潘旭. 灵芝子实体、菌丝体和孢子黑色素的结构表征与理化性质研究[J]. 生物技术通报, 2021, 37(11): 81-91. |
[7] | 黄元霞, 彭传海, 丁宁, 邱忠平, 李星, 邹美慧. 一种三联乳酸菌的体外降胆固醇和抗氧化能力研究[J]. 生物技术通报, 2020, 36(12): 113-120. |
[8] | 鲁琳, 杨尚谕, 刘维东, 鲁黎明. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020, 36(12): 42-53. |
[9] | 刘融, 崔凯, 白福恒, 刁其玉. 蛋氨酸调控畜禽氧化应激的研究进展[J]. 生物技术通报, 2020, 36(10): 207-214. |
[10] | 闻远, 夏娟, 戚良华, 刘小伟, 刘晨光, 白凤武. 抗氧化基因过表达提高运动发酵单胞菌糠醛耐受性[J]. 生物技术通报, 2019, 35(8): 85-94. |
[11] | 刘洋儿, 郭明璋, 杜若曦, 贺晓云, 黄昆仑, 许文涛. 乳酸菌在合成生物学中的研究现状及展望[J]. 生物技术通报, 2019, 35(8): 193-204. |
[12] | 黄湘湄, 吴雅茜, 刘颖, 梁嘉烨, 苏伟明. 海洋源乳酸菌AI-2类群体感应抑制剂对单增李斯特菌抑制效果研究[J]. 生物技术通报, 2019, 35(4): 36-42. |
[13] | 陈子涵, 刘金娟. 六种食用菌体外抗氧化及抗细胞增殖活性研究[J]. 生物技术通报, 2019, 35(11): 104-108. |
[14] | 王琦, 冯静红, 孙占斌, 姜维治, 李世东, 孙漫红, 马桂珍. 氧化胁迫对粉红螺旋聚孢霉生长和产厚垣孢子的影响[J]. 生物技术通报, 2018, 34(4): 168-173. |
[15] | 陈浩宇, 徐瑞涛, 程志翔, 高强, 张健. H2O2对黑曲霉氧化胁迫机理的研究[J]. 生物技术通报, 2018, 34(4): 201-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||