生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 179-186.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0694
滕梦鑫1(), 徐亚1, 何静1, 汪奇1, 乔飞2, 李敬阳2, 李新国1()
收稿日期:
2023-07-18
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
李新国,男,教授,研究方向:果树种质资源与栽培;E-mail: lixinguo13@163.com作者简介:
滕梦鑫,女,硕士研究生,研究方向:果树分子生物学;E-mail: tengmx26@163.com
基金资助:
TENG Meng-xin1(), XU Ya1, HE Jing1, WANG Qi1, QIAO Fei2, LI Jing-yang2, LI Xin-guo1()
Received:
2023-07-18
Published:
2023-12-26
Online:
2024-01-11
摘要:
Metacaspases(MCs)是植物程序性细胞死亡的调控基因,参与植物对胁迫的响应。利用PCR技术,从巴西蕉(Musa AAA Cavendish cv. Brazil)细胞中克隆到MaMCs家族成员MaMC6,对其进行生物信息学分析、表达模式分析和功能验证。结果表明,MaMC6由320个氨基酸组成,为稳定蛋白,具有亲水性,不含跨膜结构,含有一个caspase-like domain,属于II型metacaspase蛋白,具有一个防御和应激响应元件。RT-qPCR分析结果显示,100 mmol/L NaCl处理后MaMC6在2 h时相对表达量达到对照的7.70倍;盐胁迫下CaCl2处理后,基因的表达在2 h时为对照的3.99倍;而钙离子螯合剂EGTA 和钙离子通道阻碍剂LaCl3的处理提高了MaMC6在盐胁迫下的表达,2 h时达到对照的9.92和11.20倍。亚细胞定位结果显示,MaMC6定位在细胞质和细胞核上。转大肠杆菌结果显示,重组菌株pET28a-MaMC6在NaCl、甘露醇和高温胁迫下生长情况优于对照菌株pET28a。综上所述,MaMC6可能参与香蕉对非生物胁迫的响应过程。本研究为进一步研究MaMCs在香蕉抗逆中的作用提供参考。
滕梦鑫, 徐亚, 何静, 汪奇, 乔飞, 李敬阳, 李新国. 香蕉MaMC6的克隆及原核表达分析[J]. 生物技术通报, 2023, 39(12): 179-186.
TENG Meng-xin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI Jing-yang, LI Xin-guo. Cloning and Prokaryotic Expression Analysis of MaMC6 in Banana[J]. Biotechnology Bulletin, 2023, 39(12): 179-186.
引物名称 Primer name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
Actin | CGTAGCACCAGAAGAACA | CATAAAGGGAGAGGACAG |
MaMC6 | GTGAGCAACAAGGAACTG | AGTAAAGGCAAGGGTGTT |
pET28a-MaMC6 | AAGAAGGAGATATACATGGAAGCGGGCAAGAAGCG | GTGGTGGTGGTGCTCCATGCAAGCACGTAGCTGCTG |
1302-MaMC6-GFP | CGGGGGACTCTTGACATGGAAGCGGGCAAGAAGCG | TTCTTCTCCTTTACTCATGCAAGCACGTAGCTGCTG |
表1 试验所用引物
Table 1 Primers used in the experiment
引物名称 Primer name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
Actin | CGTAGCACCAGAAGAACA | CATAAAGGGAGAGGACAG |
MaMC6 | GTGAGCAACAAGGAACTG | AGTAAAGGCAAGGGTGTT |
pET28a-MaMC6 | AAGAAGGAGATATACATGGAAGCGGGCAAGAAGCG | GTGGTGGTGGTGCTCCATGCAAGCACGTAGCTGCTG |
1302-MaMC6-GFP | CGGGGGACTCTTGACATGGAAGCGGGCAAGAAGCG | TTCTTCTCCTTTACTCATGCAAGCACGTAGCTGCTG |
图2 MaMC6与其他植物氨基酸序列多重对比 At:拟南芥;Ma:香蕉A基因组;Mb:香蕉B基因组;Os:水稻;Pd:海枣; Eg:油棕;Ao:石刁柏;Mi:芒果; Cs:甜橙;Zo:姜
Fig. 2 Multiple comparison of amino acid sequences between MaMC6 and other plants At: Arabidopsis thaliana; Ma: genome A of Musa acuminata; Mb: genome B of Musa balbisiana; Os: Oryza sativa; Pd: Phoenix dactylifera; Eg: Elaeis guineensis; Ao: Asparagus officinalis; Mi: Mangifera indica; Cs: Citrus sinensis; Zo: Zingiber officinale
图3 MaMC6与其他植物的系统进化树分析 Mb: 香蕉B基因组; Ma: 香蕉A基因组; Zo: 姜; Os: 水稻; Ao: 石刁柏; Da: 参薯; Pd: 海枣; Eg: 油棕; At: 拟南芥; Pv: 开心果; Mi: 芒果; Cs: 甜橙; Tc: 可可树; Dz: 榴莲; Hs: 木槿; Ga: 澳洲棉; Gh: 陆地棉; Mc: 苦瓜; Bh: 冬瓜; Ls: 莴苣
Fig. 3 Phylogenetic tree analysis of MaMC6 and other plants Mb: Musa balbisiana; Ma: Musa acuminata; Zo: Zingiber officinale; Os: Oryza sativa; Ao: Asparagus officinalis; Da: Dioscorea alata; Pd: Phoenix dactylifera; Eg: Elaeis guineensis; At: Arabidopsis thaliana; Pv: Pistacia vera; Mi: Mangifera indica; Cs: Citrus sinensis; Tc: Theobroma cacao; Dz: Durio zibethinus; Hs: Hibiscus syriacus; Ga: Gossypium austral; Gh: Gossypium hirsutum; Mc: Momordica charantia; Bh: Benincasa hispida; Ls: Lactuca sativa
图6 MaMC6在NaCl处理下的基因表达 不同小写字母表示在P<0.05水平差异显著,下同
Fig. 6 Gene expression of MaMC6 under NaCl treatment Different lower letters indicate significant differences at P<0.05 level. The same below
图7 不同钙效应剂对盐胁迫下MaMC6表达的影响
Fig. 7 Effects of different calcium effectors on the expression of MaMC6 under salt stress A:100 mmol/L NaCl + 10 mmol/L CaCl2;B:100 mmol/L NaCl + 10 mmol/L EGTA;C:100 mmol/L NaCl + 5 mmol/L LaCl2
图8 MaMC6亚细胞定位 A、D:绿色荧光信号;B、E:明场;C、F:叠加;标尺:20 μm
Fig. 8 Subcellular localization of MaMC6 A, D: GFP fluorescence. B, E: Bright. C, F: Merge. Scale bar= 20 μm
图9 MaMC6在大肠杆菌BL21中的功能验证 上排为pET28表达菌株,下排为pET28a-MaMC6表达菌株
Fig. 9 Functional verification of MaMC6 in Escherichia coli BL21 The upper row is the pET28 expressed strain, and the lower row is the pET28a-MaMC6 expressed strain
[1] |
Liu PW, Liang SJ, Yao N, et al. Programmed cell death of secretory cavity cells in fruits of Citrus grandis cv. Tomentosa is associated with activation of caspase 3-like protease[J]. Trees, 2012, 26(6): 1821-1835.
doi: 10.1007/s00468-012-0752-1 URL |
[2] |
Malerba M, Cerana R. Plant cell cultures as a tool to study programmed cell death[J]. Int J Mol Sci, 2021, 22(4): 2166.
doi: 10.3390/ijms22042166 URL |
[3] |
Fukuda H. Programmed cell death of tracheary elements as a paradigm in plants[J]. Plant Mol Biol, 2000, 44(3): 245-253.
doi: 10.1023/a:1026532223173 pmid: 11199386 |
[4] | 于维华, 陈鹏, 王莉, 等. 植物细胞程序性死亡(PCD)的研究进展[J]. 广西植物, 2004, 24(2): 146-151. |
Yu WH, Chen P, Wang L, et al. Advances in studies on programmed cell death(PCD)in plants[J]. Guihaia, 2004, 24(2): 146-151. | |
[5] | 罗石磊. 硫化氢对镉胁迫下黄瓜幼苗根尖细胞程序性死亡的影响[D]. 兰州: 甘肃农业大学, 2020. |
Luo SL. Effect of hydrogen sulfide on programmed cell death of cucumber(Cucumis sativus L.)root tip under cadmium stress[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[6] |
Wang J, Li XR, Liu YB, et al. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells[J]. J Plant Physiol, 2010, 167(14): 1145-1151.
doi: 10.1016/j.jplph.2010.03.008 URL |
[7] | Yanık F, Çetinbaş-Genç A, Vardar F. Abiotic stress-induced programmed cell death in plants[D]. New York: Academic Press, 2020: 1-24. |
[8] |
Lam E. Controlled cell death, plant survival and development[J]. Nat Rev Mol Cell Biol, 2004, 5(4): 305-315.
doi: 10.1038/nrm1358 |
[9] |
Tsiatsiani L, Van Breusegem F, Gallois P, et al. Metacaspases[J]. Cell Death Differ, 2011, 18(8): 1279-1288.
doi: 10.1038/cdd.2011.66 pmid: 21597462 |
[10] |
Vercammen D, Declercq W, Vandenabeele P, et al. Are metacaspases caspases?[J]. J Cell Biol, 2007, 179(3): 375-380.
doi: 10.1083/jcb.200705193 pmid: 17967946 |
[11] |
Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast[J]. J Biol Chem, 2005, 280(15): 14691-14699.
doi: 10.1074/jbc.M413527200 pmid: 15691845 |
[12] |
Coll NS, Vercammen D, Smidler A, et al. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009): 1393-1397.
doi: 10.1126/science.1194980 URL |
[13] |
Escamez S, André D, Zhang B, et al. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation[J]. Biol Open, 2016, 5(2): 122-129.
doi: 10.1242/bio.015529 pmid: 26740571 |
[14] |
Wrzaczek M, Vainonen JP, Stael S, et al. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidop-sis[J]. EMBO J, 2015, 34(1): 55-66.
doi: 10.15252/embj.201488582 pmid: 25398910 |
[15] |
He R, Drury GE, Rotari VI, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabi-dopsis[J]. J Biol Chem, 2008, 283(2): 774-783.
doi: 10.1074/jbc.M704185200 URL |
[16] | 韩小娇. 杨树木质部细胞程序化死亡的类Caspase、PtVPE与PtCDD作用研究[D]. 北京: 中国林业科学研究院, 2011. |
Han XJ. Caspase-like、PtVPE and PtCDD in relation to programmed cell death in xylem cell of poplar[D]. Beijing: Chinese Academy of Forestry, 2011. | |
[17] |
Watanabe N, Lam E. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses[J]. Plant J, 2011, 66(6): 969-982.
doi: 10.1111/tpj.2011.66.issue-6 URL |
[18] | Wang LK, Zhang H. Genomewide survey and characterization of metacaspase gene family in rice(Oryza sativa)[J]. J Genet, 2014, 93(1): 93-102. |
[19] |
Huang L, Zhang HJ, Hong YB, et al. Stress-responsive expression, subcellular localization and protein-protein interactions of the rice metacaspase family[J]. Int J Mol Sci, 2015, 16(7): 16216-16241.
doi: 10.3390/ijms160716216 pmid: 26193260 |
[20] | 顾天竹, 周启凡. 中国香蕉生产布局的时空演变分析[J]. 江苏农业科学, 2017, 45(5): 315-319. |
Gu TZ, Zhou QF. Temporal and spatial evolution analysis of banana production layout in China[J]. Jiangsu Agric Sci, 2017, 45(5): 315-319. | |
[21] | 谢江辉. 新中国果树科学研究70年——香蕉[J]. 果树学报, 2019, 36(10): 1429-1440. |
Xie JH. Fruit scientific research in New China in the past 70 years: banana[J]. J Fruit Sci, 2019, 36(10): 1429-1440. | |
[22] |
Turner DW, Fortescue JA, Thomas DS. Environmental physiology of the bananas(Musa spp.)[J]. Braz J Plant Physiol, 2007, 19(4): 463-484.
doi: 10.1590/S1677-04202007000400013 URL |
[23] | 王金环, 韩立民. 海水灌溉农业的内涵、特征及发展对策建议[J]. 浙江海洋学院学报: 人文科学版, 2013, 30(4): 6-10. |
Wang JH, Han LM. A study on the connotation, characteristics and development countermeasures of seawater irrigation[J]. J Zhejiang Ocean Univ Humanit Sci, 2013, 30(4): 6-10. | |
[24] | 唐露, 孙梦利, 杨振, 等. 香蕉Metacaspases家族基因的鉴定及表达分析[J]. 基因组学与应用生物学, 2020, 39(1): 181-194. |
Tang L, Sun ML, Yang Z, et al. Genome-wide identification and expression characteristics of metacaspase family genes in banana[J]. Genom Appl Biol, 2020, 39(1): 181-194. | |
[25] | 徐亚, 滕梦鑫, 何岳东, 等. 香蕉NHX基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(3): 681-691. |
Xu Y, Teng MX, He YD, et al. Identification and expression analysis of NHX genes family in banana[J]. Plant Physiol J, 2021, 57(3): 681-691.
doi: 10.1104/pp.57.5.681 URL |
|
[26] | Nagata T, Nemoto Y, Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants[J]. Int Rev Cytol, 1992, 132: 1-30. |
[27] |
Binzel ML, Hasegawa PM, Handa AK, et al. Adaptation of tobacco cells to NaCl[J]. Plant Physiol, 1985, 79(1): 118-125.
doi: 10.1104/pp.79.1.118 pmid: 16664356 |
[28] | 董静. 基于悬浮细胞培养的大麦耐镉性基因型差异及大小麦耐渗透胁迫差异的机理研究[D]. 杭州: 浙江大学, 2009. |
Dong J. Studies on differences in the tolerance to cadmium toxicity in different barley genotypes and to osmotic stress between barley and wheat using suspension cell cultures[D]. Hangzhou: Zhejiang University, 2009. | |
[29] | Wang JC, Yao LR, Li BC, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Front Plant Sci, 2016, 7: 110. |
[30] |
Chun HJ, Baek D, Cho HM, et al. Metabolic adjustment of Arabidopsis root suspension cells during adaptation to salt stress and mitotic stress memory[J]. Plant Cell Physiol, 2019, 60(3): 612-625.
doi: 10.1093/pcp/pcy231 URL |
[31] | 滕梦鑫. 探究盐胁迫诱导香蕉PCD过程中Ca2+-ATPase的作用[D]. 海口: 海南大学. 2022. |
Teng M X. To explore the role of Ca2+-ATPase in banana PCD induced by salt stress[D]. Haikou: Hainan University. 2022. | |
[32] |
Kim SM, Bae C, Oh SK, et al. A pepper(Capsicum annuum L.) metacaspase 9(Camc9)plays a role in pathogen-induced cell death in plants[J]. Mol Plant Pathol, 2013, 14(6): 557-566.
doi: 10.1111/mpp.2013.14.issue-6 URL |
[33] |
Yusof NFM, Saparin NF, Ahmad Seman Z, et al. Overexpression of type II rice metacaspase, OsMC4, increases endoplasmic reticulum stress tolerance in transgenic rice calli[J]. Plant Gene, 2023, 34: 100421.
doi: 10.1016/j.plgene.2023.100421 URL |
[34] | 杨振. 盐胁迫诱导香蕉根系细胞程序性死亡及其外源Ca2+调控机理[D]. 海口: 海南大学. 2021. |
Yang Z. Salt stress-induced programmed cell death and via Ca2+ mediated regulator mechanism in banana root[D]. Haikou: Hainan University. 2021. | |
[35] |
Wang H, Li J, Bostock RM, et al. Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development[J]. Plant Cell, 1996, 8(3): 375-391.
doi: 10.2307/3870319 URL |
[36] |
Li J, Wang DY, Li Q, et al. PPF1 inhibits programmed cell death in apical meristems of both G2 pea and transgenic Arabidopsis plants possibly by delaying cytosolic Ca2+ elevation[J]. Cell Calcium, 2004, 35(1): 71-77.
doi: 10.1016/j.ceca.2003.07.003 URL |
[37] |
Lin JS, Wang Y, Wang GX. Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts[J]. Plant Growth Regul, 2005, 45(3): 243-250.
doi: 10.1007/s10725-005-5163-5 URL |
[38] |
Zuppini A, Navazio L, Sella L, et al. An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells[J]. Mol Plant Microbe Interact, 2005, 18(8): 849-855.
doi: 10.1094/MPMI-18-0849 URL |
[39] |
Tsiatsiani L, Timmerman E, De Bock PJ, et al. The Arabidopsis metacaspase9 degradome[J]. Plant Cell, 2013, 25(8): 2831-2847.
doi: 10.1105/tpc.113.115287 URL |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[3] | 梅欢, 李玥, 刘可蒙, 刘吉华. 小檗碱桥酶高效原核表达及生物合成l-SLR的研究[J]. 生物技术通报, 2023, 39(7): 277-287. |
[4] | 尚怡彤, 闫欢欢, 王丽红, 田学琴, 薛萍红, 罗涛, 胡志宏. 米曲霉磷酸甲羟戊酸激酶功能研究[J]. 生物技术通报, 2023, 39(12): 311-319. |
[5] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[6] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[7] | 索青青, 吴楠, 杨慧, 李莉, 王锡锋. 水稻咖啡酰辅酶A-O-甲基转移酶基因的原核表达、抗体制备和应用[J]. 生物技术通报, 2022, 38(8): 135-141. |
[8] | 覃雪晶, 王雨涵, 曹一博, 张凌云. 青杄PwHAP5基因原核表达及多克隆抗体制备[J]. 生物技术通报, 2022, 38(8): 142-149. |
[9] | 王光丽, 范婵, 王辉, 卢惠芳, 夏灵尹, 黄健, 闵迅. 霍乱弧菌溶血素HlyA的原核表达、纯化及多克隆抗体制备与鉴定[J]. 生物技术通报, 2022, 38(7): 269-277. |
[10] | 杨佳宝, 周至铭, 张展, 冯丽, 孙黎. 向日葵HaLACS1的克隆、表达及酵母功能互补鉴定[J]. 生物技术通报, 2022, 38(6): 147-156. |
[11] | 镐青青, 姚圣, 刘佳禾, 陈佩珍, 张梦洋, 季孔庶. 马尾松NAC转录因子基因PmNAC8的克隆及表达分析[J]. 生物技术通报, 2022, 38(4): 202-216. |
[12] | 赵婷婷, 王俊刚, 王文治, 冯翠莲, 冯小艳, 张树珍. 甘蔗单糖转运蛋白基因ShSTP7序列分析及组织表达特征测定[J]. 生物技术通报, 2022, 38(4): 72-78. |
[13] | 汪巧菊, 胡雨萌, 温亚亚, 宋丽, 孟闯, 潘志明, 焦新安. 新型冠状病毒S1蛋白的表达及活性鉴定[J]. 生物技术通报, 2022, 38(3): 157-163. |
[14] | 党瑗, 李维, 苗向, 修宇, 林善枝. 山杏油体蛋白基因PsOLE4克隆及其调控油脂累积功能分析[J]. 生物技术通报, 2022, 38(11): 151-161. |
[15] | 骆鹰, 谭智, 王帆, 刘晓霞, 罗小芳, 何福林. 银杏GbR2R3-MYB1基因的克隆及非生物胁迫应答分析[J]. 生物技术通报, 2022, 38(10): 184-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||