生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 160-167.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0889
收稿日期:
2022-07-18
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
张丽霞,女,博士,副研究员,研究方向:高粱重要农艺性状基因挖掘与利用;E-mail: 39533597@qq.com作者简介:
王春语,女,硕士,助理研究员,研究方向:高粱分子育种技术;E-mail: wangchunyu88899@126.com
基金资助:
WANG Chun-yu(), LI Zheng-jun, WANG Ping, ZHANG Li-xia()
Received:
2022-07-18
Published:
2023-05-26
Online:
2023-06-08
摘要:
植物抗旱性与体表蜡质积累有关,高粱是抗旱性极强的作物,茎秆和叶片表面覆盖一层厚厚的蜡质,开展高粱体表蜡质层对高粱抗旱能力的研究,为高粱抗旱品种选育和抗旱分子机制提供理论依据。以高粱品种BTx623和表皮蜡质缺失突变体sb1为试验材料,统计农艺性状以及扫描电镜观察叶片表面蜡质形态结构;分析表皮蜡质的有无对离体叶片失水速率和叶绿素浸提率的影响;检测在干旱胁迫处理下植株的表型变化以及超氧化物歧化酶(SOD)、过氧化物酶(POD)的活性变化。结果表明,与对照BTx623相比,表皮蜡质缺失突变体sb1株高明显降低、抽穗开花期延后1周、叶片远轴面片状蜡质缺失,其他农艺性状变化不明显。突变体sb1离体叶片失水速率和叶绿素浸提率显著高于对照。在干旱胁迫处理条件下,随着干旱胁迫时间的增长,对照BTx623和突变体sb1的SOD和POD活性均增强,但对照SOD和POD活性均显著高于突变体sb1,且干旱处理96 h和复水后突变体sb1都造成叶片大面积干枯。突变体sb1表皮蜡质缺失后叶片渗透性增强,清除活性氧的能力减弱,抗旱性降低。
王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167.
WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1[J]. Biotechnology Bulletin, 2023, 39(5): 160-167.
图1 抽穗开花期BTx623与sb1的表型 A:整株;B:叶片近轴面;C:叶片远轴面
Fig. 1 Phenotypes of BTx623 and sb1 in heading and flow-ering period A: The whole plants. B: The adaxial sides of leaves. C: The abaxial sides of leaves
材料名称 Genotype | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 穗长 Spike length/cm | 穗茎长 Spike stem length/cm | 粒数 Grain yield per plant | 千粒重 1 000-grain weight/g | 抽穗期 Heading stage/d |
---|---|---|---|---|---|---|---|
BTx623 | 138.67±5.51 | 1.63±0.08 | 32.33±2.52 | 37.67±2.08 | 1 612.52±39.23 | 26.19±0.21 | 79±2.16 |
sb1 | 133.97±6.10* | 1.62±0.14 | 33.32±0.89 | 36.33±1.52 | 1 487.08±28.59 | 25.06±0.43 | 86±2.46* |
表1 BTx623和sb1农艺性状比较
Table 1 Comparison of agronomic traits between BTx623 and sb1
材料名称 Genotype | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 穗长 Spike length/cm | 穗茎长 Spike stem length/cm | 粒数 Grain yield per plant | 千粒重 1 000-grain weight/g | 抽穗期 Heading stage/d |
---|---|---|---|---|---|---|---|
BTx623 | 138.67±5.51 | 1.63±0.08 | 32.33±2.52 | 37.67±2.08 | 1 612.52±39.23 | 26.19±0.21 | 79±2.16 |
sb1 | 133.97±6.10* | 1.62±0.14 | 33.32±0.89 | 36.33±1.52 | 1 487.08±28.59 | 25.06±0.43 | 86±2.46* |
图3 BTx623和sb1叶片渗透性分析 A:离体叶片失水速率;B:离体叶片失水表型;C:叶绿素浸提率。**表示在0.01水平上差异显著。下同
Fig. 3 Leaf permeabilities between BTx623 and sb1 A: Water loss rates of excised leaves. B: Phenotypes of excised-leaves water loss. C: Chlorophyll leaching rates. ** indicates significant difference at the 0.01 level. The same as below
图4 干旱胁迫处理下BTx623和sb1的表型变化 A:正常浇水;B:干旱胁迫处理72 h;C:干旱胁迫处理96 h;D:复水后96 h
Fig. 4 Phenotypes of BTx623 and sb1 under drought stress A: Normal watering. B: Drought stress for 72 h. C: Drought stress for 96 h.D: Seedlings recovery 96 h after re-watering
[1] |
Menezes CB, Ticona-Benavente CA, Tardin FD, et al. Selection indices to identify drought-tolerant grain sorghum cultivars[J]. Genet Mol Res, 2014, 13(4): 9817-9827.
doi: 10.4238/2014.November.27.9 pmid: 25501191 |
[2] |
Dahlberg J. The role of sorghum in renewables and biofuels[J]. Methods Mol Biol, 2019, 1931: 269-277.
doi: 10.1007/978-1-4939-9039-9_19 pmid: 30652297 |
[3] |
Gladman N, Hufnagel B, Regulski M, et al. Sorghum root epigenetic landscape during limiting phosphorus conditions[J]. Plant Direct, 2022, 6(5): e393.
doi: 10.1002/pld3.393 pmid: 35600998 |
[4] | 张福耀, 赵威军, 平俊爱. 高能作物——甜高粱[J]. 中国农业科技导报, 2006, 8(1): 14-17. |
Zhang FY, Zhao WJ, Ping JN. Macroergic crop—sweet sorghum[J]. Rev China Agric Sci Technol, 2006, 8(1): 14-17. | |
[5] | 裴冬, 张喜英, 王峻. 高粱、谷子根系发育及其抗旱性研究[J]. 中国生态农业学报, 2002, 10(4): 28-30. |
Pei D, Zhang XY, Wang J. Study on root system development and drought resistance of sorghum and millet[J]. Chin J Eco Agric, 2002, 10(4): 28-30. | |
[6] |
Elango D, Xue WY, Chopra S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor[J]. Physiol Mol Biol Plants, 2020, 26(8): 1727-1737.
doi: 10.1007/s12298-020-00848-5 |
[7] |
Xue DW, Zhang XQ, Lu XL, et al. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance[J]. Front Plant Sci, 2017, 8: 621.
doi: 10.3389/fpls.2017.00621 pmid: 28503179 |
[8] |
Jenks MA, Eigenbrode SD, Lemieux B. Cuticular waxes of Arabidopsis[J]. Arabidopsis Book, 2002, 1: e0016.
doi: 10.1199/tab.0016 URL |
[9] |
Zhao Y, Liu XJ, Wang MK, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1): 134.
doi: 10.1038/s41438-021-00564-5 |
[10] |
韦百阳, 徐小静. 植物表皮蜡质参与干旱胁迫的反应机制[J]. 生物技术通报, 2015, 31(8): 1-8.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.001 |
Wei BY, Xu XJ. Response mechanism of plant cuticular wax involving in drought stress response[J]. Biotechnol Bull, 2015, 31(8): 1-8.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.001 |
|
[11] |
Lewandowska M, Keyl A, Feussner I. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress[J]. New Phytol, 2020, 227(3): 698-713.
doi: 10.1111/nph.16571 pmid: 32242934 |
[12] |
Tomasi P, Wang H, Lohrey GT, et al. Characterization of leaf cuticular waxes and cutin monomers of Camelina sativa and closely-related Camelina species[J]. Ind Crops Prod, 2017, 98: 130-138.
doi: 10.1016/j.indcrop.2017.01.030 URL |
[13] |
Zhang XF, Ni Y, Xu DX, et al. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance[J]. Plant Physiol Biochem, 2021, 163: 285-295.
doi: 10.1016/j.plaphy.2021.04.007 URL |
[14] |
Vogg G, Fischer S, Leide J, et al. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase[J]. J Exp Bot, 2004, 55(401): 1401-1410.
doi: 10.1093/jxb/erh149 pmid: 15133057 |
[15] |
Seo PJ, Lee SB, Suh MC, et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis[J]. Plant Cell, 2011, 23(3): 1138-1152.
doi: 10.1105/tpc.111.083485 URL |
[16] |
Zhang Y, Du ZH, Han YT, et al. Plasticity of the cuticular transpiration barrier in response to water shortage and resupply in Camellia sinensis: a role of cuticular waxes[J]. Front Plant Sci, 2021, 11: 600069.
doi: 10.3389/fpls.2020.600069 URL |
[17] | 张海禄, 齐军仓, 王祥军. 干旱胁迫对大麦叶片表皮蜡质含量及主要生理指标的影响[J]. 麦类作物学报, 2012, 32(2): 280-283. |
Zhang HL, Qi JC, Wang XJ. Effects of water stress on epicuticular wax content and main physiological parameters of barley[J]. J Triticeae Crops, 2012, 32(2): 280-283. | |
[18] | 徐文. 旗叶蜡质含量不同小麦近等基因系的抗旱性研究[D]. 泰安: 山东农业大学, 2016. |
Xu W. Drought resistance of wheat NILs with different cuticular wax content in flag leaf[D]. Tai'an: Shandong Agricultural University, 2016. | |
[19] | 甘露. 水稻蜡质合成代谢基因WSL3及WSL4的克隆和功能分析[D]. 北京: 中国农业科学院, 2016. |
Gan L. Map-based cloning and functional analysis of WSL3 and WSL4 involved in cuticular wax biosythesis in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[20] | 毛毕刚. 水稻叶片蜡质基因的图们克隆与功能分析[D]. 北京: 中国农业科学院, 2010. |
Mao BG. Map-based cloning and functional analysis of leaf wax gene in rice(Orzya sativa L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
[21] |
Sanjari S, Shobbar ZS, Ghanati F, et al. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress[J]. Plant Physiol Biochem, 2021, 159: 383-391.
doi: 10.1016/j.plaphy.2021.01.001 URL |
[22] |
Zhang ZZ, Wang W, Li WL. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability[J]. PLoS One, 2013, 8(1): e54129.
doi: 10.1371/journal.pone.0054129 URL |
[23] |
Lolle SJ, Berlyn GP, Engstrom EM, et al. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle[J]. Dev Biol, 1997, 189(2): 311-321.
doi: 10.1006/dbio.1997.8671 pmid: 9299123 |
[24] |
潘孝武, 黎用朝, 刘文强, 等. 水稻蜡质稀少突变体wax1的鉴定及基因定位[J]. 中国水稻科学, 2020, 34(1): 1-7.
doi: 10.16819/j.1001-7216.2019.9101 |
Pan XW, Li YC, Liu WQ, et al. Identification and genetic analysis of waxy sparse mutant wax1 in rice[J]. Chin J Rice Sci, 2020, 34(1): 1-7. | |
[25] |
Mwamahonje A, Eleblu JSY, Ofori K, et al. Drought tolerance and application of marker-assisted selection in sorghum[J]. Biology, 2021, 10(12): 1249.
doi: 10.3390/biology10121249 URL |
[26] |
Busta L, Schmitz E, Kosma DK, et al. A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry[J]. Proc Natl Acad Sci USA, 2021, 118(12): e2022982118.
doi: 10.1073/pnas.2022982118 URL |
[27] | 赖勇. 大麦EMS诱变蜡质突变体鉴定分析[D]. 兰州: 甘肃农业大学, 2014. |
Lai Y. Characeration and analysis of wax mutant induced by EMS in barley[D]. Lanzhou: Gansu Agricultural University, 2014. | |
[28] | 党云萍, 李春霞, 刘东雄. 水分胁迫对植物生理生化研究进展[J]. 陕西农业科学, 2012, 58(5): 89-93, 122. |
Dang YP, Li CX, Liu DX. Research progress of water stress on plant physiology and biochemistry[J]. Shaanxi J Agric Sci, 2012, 58(5): 89-93, 122. | |
[29] |
Fiebig A, Mayfield JA, Miley NL, et al. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems[J]. Plant Cell, 2000, 12(10): 2001-2008.
doi: 10.1105/tpc.12.10.2001 pmid: 11041893 |
[30] | 郑好, 吕夏晨, 谭赛琼, 等. 干旱胁迫下大麦蜡质缺失突变体的生理生化指标及蜡质基因表达[J]. 浙江大学学报: 农业与生命科学版, 2019, 45(1): 8-13. |
Zheng H, Lü XC, Tan SQ, et al. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress[J]. J Zhejiang Univ Agric Life Sci, 2019, 45(1): 8-13. | |
[31] | 裴冬丽, 张红岩, 张贺, 等. 干旱胁迫对番茄幼苗叶片SOD、POD和PAL活性的影响[J]. 吉林农业科学, 2015, 40(4): 83-86. |
Pei DL, Zhang HY, Zhang H, et al. Effects of drought stress on SOD, POD and PAL activity in tomato seedling leaves[J]. J Jilin Agric Sci, 2015, 40(4): 83-86. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
[5] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
[6] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[7] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[8] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[9] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[10] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[11] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[12] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[13] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[14] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[15] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||