生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 228-240.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1349

• 研究报告 • 上一篇    下一篇

蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究

马俊秀(), 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅()   

  1. 黑龙江省科学院微生物研究所,哈尔滨 150010
  • 收稿日期:2022-11-03 出版日期:2023-07-26 发布日期:2023-08-17
  • 通讯作者: 张淑梅,女,博士,研究员,研究方向:微生物农药;E-mail: 1401135157@qq.com
  • 作者简介:马俊秀,女,硕士研究生,研究方向:微生物农药;E-mail: 2634643414@qq.com
  • 基金资助:
    黑龙江省科学院基金项目(KY2021SW01)

Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects

MA Jun-xiu(), WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei()   

  1. Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010
  • Received:2022-11-03 Published:2023-07-26 Online:2023-08-17

摘要:

为获得广谱高效拮抗蔬菜软腐病菌的生防菌株,本研究以白菜软腐病菌Pectobacterium carotovorum BC2、圆葱软腐病菌Burkholderia gladioli YC1、娃娃菜软腐病菌Pseudomonas sp. WWC2为靶标,采用梯度稀释法及抑菌圈法从蔬菜根际土中分离筛选拮抗菌株。通过形态、生理生化和16S rDNA序列分析对菌株进行鉴定,明确生防菌株种属地位,并研究了菌株生长特性,利用牛津杯法测定生防菌株对3株软腐病菌及3株人源性病原细菌抑菌作用,采用平板对峙法测定其对8株植物病原真菌的抑菌作用,采用针刺接种法测定其对蔬菜离体叶片和田间的防效,并利用X-gal显色法测定其对白菜软腐病菌群体感应信号因子的降解活性。通过研究菌株生长特性、对白菜软腐病菌群体感应信号因子的降解活性、抑菌谱以及对白菜软腐病的田间防效。结果表明,从20个土样分离的1 012个细菌中,筛选出18株拮抗菌,其中筛选出1株对3种软腐病菌YC1、BC2、WWC2均有抑菌活性的生防菌株DJ1,其抑菌圈直径分别为(10.60 ± 0.20)mm、(6.92 ± 0.56)mm和(3.92 ± 0.16)mm。经鉴定菌株DJ1为贝莱斯芽孢杆菌Bacillus velezensis。菌株DJ1最适生长温度为30℃,具有较好的耐盐性,能在1%-5% NaCl条件下生长,具有一定降解白菜软腐病菌群体感应信号因子的能力,能够抑制大肠杆菌、金黄色葡萄球菌和8种植物病原真菌生长,1×108 CFU/mL菌液浓度对白菜、圆葱、娃娃菜软腐病离体防效分别为84.30%、60.21%和69.96%,对白菜软腐病田间防效为79.91%。因此,贝莱斯芽孢杆菌DJ1在防治蔬菜软腐病方面具有潜在应用潜能。

关键词: 蔬菜, 软腐病菌, 拮抗菌, 筛选, 防效, 贝莱斯芽孢杆菌, 鉴定, 抑菌作用

Abstract:

To obtain a broad-spectrum biocontrol strain with high efficiency against vegetable soft rot bacteria, in this study, a biocontrol strain DJ1 with good inhibition effect on three pathogens was screened from vegetable rhizosphere soil by the method of bacteriostasis circle, using soft rot pathogen of Chinese cabbage Pectobacterium carotovorum BC2, onion Burkholderia gladioli YC1 and baby cabbage Pseudomonas sp. WWC2 as the targets. Antagonistic strains were isolated and screened from vegetable rhizosphere soil by gradient dilution and bacteriostatic zone method. Through morphological, physiological and biochemical analysis and 16S rDNA sequence analysis, the species of the biocontrol strains were identified, and their the growth characteristics were studied. The Oxford Cup method was used to determine the bacteriostasis of the biocontrol strains on 3 strains of soft rot and 3 strains of human pathogenic bacteria, and the plate confrontation method to determine the bacteriostasis on 8 strains of plant pathogenic fungi. Needling inoculation method was applied to determine the control effect on vegetables leaves in vitro and field, and X-gal chromogenic method to determine the degradation activities of quorum-sensing signal factors against Chinese cabbage soft rot pathogen. The growth characteristics of the strain, its ability to degrade quorum sensing signal factors, its bacteriostatic spectrum and its field control effect on soft rot of Chinese cabbage were studied. The results showed that 18 antagonistic strains were selected from 1 012 bacteria isolated from 20 soil samples, among which 1 biocontrol strain DJ1 had antibacterial activity against 3 soft rot pathogens YC1, BC2 and WWC2. The antibacterial zone diameters were(10.60±0.20),(6.92±0.56)and(3.92±0.16)mm, respectively. The strain DJ1 was identified as Bacillus velezensis. The optimal growth temperature of strain DJ1 was 30℃, and it had good salt tolerance and grew under 1%-5% NaCl. It had the ability to degrade the quorum-sensing signaling factors of Chinese cabbage, and inhibited the growth of Escherichia coli, Staphylococcus aureus and 8 plant pathogenic fungi. The 1×108 CFU/mL of bacterial solution was 84.30%, 60.21% and 69.96% in vitro against soft rot of Chinese cabbage, onion and baby cabbage, respectively, and 79.91% in field. Therefore, B. velezensis DJ1 presents potential application in the control of vegetable soft rot.

Key words: vegetables, soft rot pathogens, antagonistic bacteria, screening, control effect, Bacillus velezensis, identification, bacteriostasis