生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 137-147.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0138

• 技术与方法 • 上一篇    下一篇

代谢工程改造毕赤酵母生产赤藓糖醇

赵思佳1(), 王晓璐2, 孙纪录1, 田健2(), 张杰2()   

  1. 1.河北农业大学食品科技学院,保定 071000
    2.中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室,北京 100193
  • 收稿日期:2023-02-19 出版日期:2023-08-26 发布日期:2023-09-05
  • 通讯作者: 田健,男,博士,研究员,研究方向:蛋白分子设计;E-mail: tianjian@caas.cn
    张杰,男,博士,研究方向:微生物代谢工程;E-mail: zhangjie09@caas.cn
  • 作者简介:赵思佳,女,硕士研究生,研究方向:食品微生物;E-mail: sijia_zhao@163.com
  • 基金资助:
    国家重点研发计划(2022YFD1300701);农业科技创新工程(cxgc-ias-16)

Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering

ZHAO Si-jia1(), WANG Xiao-lu2, SUN Ji-lu1, TIAN Jian2(), ZHANG Jie2()   

  1. 1. College of Food Science and Technology, Hebei Agricultural University, Baoding 071000
    2. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2023-02-19 Published:2023-08-26 Online:2023-09-05

摘要:

本研究旨在以毕赤酵母为底盘细胞构建赤藓糖醇生产菌株。通过调控糖酵解途径中磷酸果糖激酶基因pfk的表达,敲除副产物阿拉伯糖醇和核糖醇生产相关基因,过表达不同来源的4-磷酸赤藓糖磷酸化酶、赤藓糖还原酶和糖醇磷酸酶,构建毕赤酵母赤藓糖醇生产菌株,对过表达戊糖磷酸途径关键酶转酮酶(TKL)、磷酸核酮糖差向异构酶(RPE)及赤藓糖还原酶对赤藓糖醇产量的影响也进行了探究。结果表明,过表达酿酒酵母来源的糖醇磷酸酶基因pyp1及大肠杆菌来源的4-磷酸赤藓糖磷酸化酶基因yidA的工程菌株C8具有赤藓糖醇生产能力,摇瓶发酵产量为30 mg/L;进一步过表达tklrpe后,菌株C10摇瓶发酵产量提高约40倍,达到1.2 g/L,高密度发酵产量为10.6 g/L;赤藓糖还原酶的过量表达并没有提升赤藓糖醇的产量,反而提高了副产物的产量。本研究首次在毕赤酵母中成功构建了赤藓糖醇合成通路,为改造毕赤酵母高效生产赤藓糖醇及其他高价值化合物奠定基础。

关键词: 赤藓糖醇, 毕赤酵母, 代谢工程, 发酵

Abstract:

The aim of this study is to construct an erythritol-producing strain using Pichia pastoris as the chassis cell. An erythritol-producing P. pastoris strain was developed by regulating the expression of phosphofructokinase gene(pfk)in glycolysis pathway, knocking out the genes associated with the production of by-products arabitol and ribitol, and overexpressing 4-phosphate erythrose phosphorylase, erythrose reductase and sugar alcohol phosphatase genes derived from different organisms. Next, we investigated the effects of overexpressions of erythrose reductase and two key enzymes transketolase(TKL)and ribulose-phosphate epimerase(RPE)involved in pentose phosphate pathway on the erythritol production. The results showed that strain C8 harboring pyp1 gene derived from Saccharomyces cerevisiae and yidA gene derived from Escherichia coli had the ability to produce erythritol. The erythritol production of the C8 strain in shake-flask fermentation was 30 mg/L. Furthermore, the overexpression of tkl and rpe genes enhanced the erythritol production of C10 strain by about 40-fold. The erythritol production of C10 reached 1.2 and 10.6 g/L in the shake-flask and high-cell-density fermentations, respectively. Further the overexpression of erythrose reductase did not cause the erythritol production increased, while caused the production of by-products increased. In this study, the erythritol synthetic pathway was successfully constructed in P. pastoris for the first time, which laid a foundation for engineering P. pastoris for efficient production of erythritol and other high-value compounds.

Key words: erythritol, Pichia pastoris, metabolic engineering, fermentation