生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 40-48.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0413
李雪琪1,2,3(), 张素杰2,3, 于曼2,3, 黄金光1(), 周焕斌2,3()
收稿日期:
2023-04-28
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
黄金光,男,博士,教授,研究方向:蛋白质结构生物学、分子植物病理学; E-mail: jghuang@qau.edu.cn;作者简介:
李雪琪,女,硕士研究生,研究方向:基因组编辑技术开发与应用; E-mail: lxq_8764@163.com
基金资助:
LI Xue-qi1,2,3(), ZHANG Su-jie2,3, YU Man2,3, HUANG Jin-guang1(), ZHOU Huan-bin2,3()
Received:
2023-04-28
Published:
2023-09-26
Online:
2023-10-24
摘要:
Cas蛋白作为核酸酶发挥其切割活性需要识别特定的PAM序列,如SpCas9识别NGG PAM位点,LbCas12a识别TTTV PAM。已挖掘到新的能够识别TTCN PAM序列的蛋白—CasX蛋白,扩展了基因组编辑技术的编辑范围。本研究利用CasX的两个衍生型蛋白PlmCasX和DpbCasX,建立基于CRISPR/CasX介导的水稻基因编辑系统。通过PEG介导的水稻原生质体瞬时表达分析其编辑活性发现,PlmCasX和DpbCasX两个蛋白能够对水稻内源基因OsCPK16实现有效编辑。后通过水稻稳定遗传转化进一步验证,在TTCA PAM识别位点,DpbCasX蛋白对水稻内源基因OsCPK21的编辑效率为17.5%,PlmCasX蛋白对水稻内源基因OsCPK21的编辑效率为66.07%;在TTCG PAM识别位点,PlmCasX蛋白对OsCPK4的编辑效率为23.21%,而DpbCasX蛋白不能实现有效的基因编辑。并且基于MIDAS方法对PlmCasX蛋白的优化并不能提高其编辑活性。本研究证明了CRISPR/CasX系统在水稻中具有编辑活性,且其能识别TTCR PAM这一特性,扩大了基因编辑技术在水稻中的应用范围。
李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48.
LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice[J]. Biotechnology Bulletin, 2023, 39(9): 40-48.
名称Name | 抗性/种Resistance/Species | 来源Source | |
---|---|---|---|
质粒Plasmid | pUC57:PlmCasX | AmpR | Synthetic |
pUC57:DpbCasX | AmpR | Synthetic | |
pUC57:PlmCasX-V1 | AmpR | Synthetic | |
pHZ38 | KanR | This study | |
pENTR4:gRNA41 | KanR | Lab stock | |
pUC19:PlmCasX | AmpR | This study | |
pUC19:DpbCasX | AmpR | This study | |
pUC19:PlmCasX-V1 | AmpR | This study | |
pUbi:PlmCasX | KanR | This study | |
pUbi:DpbCasX | KanR | This study | |
pUbi:PlmCasX-V1 | KanR | This study | |
菌种Strain | JM109 | Escherichia coli | Bought from TSINGKE |
DB3.1 | Escherichia coli | Bought from TSINGKE | |
EHA105 | Agrobacterium tumefaciens | Bought from TSINGKE |
表1 载体与菌株
Table 1 Bacterial strains and plasmids
名称Name | 抗性/种Resistance/Species | 来源Source | |
---|---|---|---|
质粒Plasmid | pUC57:PlmCasX | AmpR | Synthetic |
pUC57:DpbCasX | AmpR | Synthetic | |
pUC57:PlmCasX-V1 | AmpR | Synthetic | |
pHZ38 | KanR | This study | |
pENTR4:gRNA41 | KanR | Lab stock | |
pUC19:PlmCasX | AmpR | This study | |
pUC19:DpbCasX | AmpR | This study | |
pUC19:PlmCasX-V1 | AmpR | This study | |
pUbi:PlmCasX | KanR | This study | |
pUbi:DpbCasX | KanR | This study | |
pUbi:PlmCasX-V1 | KanR | This study | |
菌种Strain | JM109 | Escherichia coli | Bought from TSINGKE |
DB3.1 | Escherichia coli | Bought from TSINGKE | |
EHA105 | Agrobacterium tumefaciens | Bought from TSINGKE |
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
pUbi-PlmCasX-F1 | ATTCCCGGGTACCGGATCCGCCACCATGGCCCCTAAAAAGAAGAGA |
pUbi-PlmCasX-R1 | GAGCGTTTTCATTGGCCCGCGCTTACCAGCTTTTTTTGTGTTCGAGTCT |
pUbi-PlmCasX-F2 | AGACTCGAACACAAAAAAAGCTGGTAAGCGCGGGCCAATGAAAACGCTC |
pUbi-PlmCasX-R2 | ACGCGGCCATTGGCCAGCCTGAGCGATCCGGTTTCCAAGGACAACAAAT |
pUbi-PlmCasX-F3 | ATTTGTTGTCCTTGGAAACCGGATCGCTCAGGCTGGCCAATGGCCGCGT |
pUbi-PlmCasX-R3 | CCCGCAGTTGCTACACGTCCTAGATGTATATTGTGCCAATGTCTTTGAC |
pUbi-PlmCasX-F4 | GTCAAAGACATTGGCACAATATACATCTAGGACGTGTAGCAACTGCGGG |
pUbi-PlmCasX-R4 | CGATCGGGGAAATTCGAGCTCACTAGTTCAGACCTTGCGCTTCTT |
fgOsCPK16-F2 | AAAGCTTCAGCACTTCAGGAGCCA |
fgOsCPK16-R2 | GGCCTGGCTCCTGAAGTGCTGAAG |
fgOsCPK11-F2 | AAAGCCACAAGCTCGTTGAAGCTT |
fgOsCPK11-R2 | GGCCAAGCTTCAACGAGCTTGTGG |
fgOsCPK21-F1 | AAAGACAGGGAGCCATTGCCGAGG |
fgOsCPK21-R1 | GGCCCCTCGGCAATGGCTCCCTGT |
fgOsCPK23-F2 | AAAGCGAACTGTCCCTGTCCAAGC |
fgOsCPK23-R2 | GGCCGCTTGGACAGGGACAGTTCG |
fgOsCPK30-F3 | AAAGGATCCACGGATGACCTGCAG |
fgOsCPK30-R3 | GGCCCTGCAGGTCATCCGTGGATC |
fgOsCPK4-F2 | AAGCCCTGTTGCTGTGGAGGATG |
fgOsCPK4-R2 | GCCCATCCTCCACAGCAACAGGG |
fgOsCPK14-F1 | AAAGTCCCCACCTCCCCTTTATCG |
fgOsCPK14-R1 | GGCCCGATAAAGGGGAGGTGGGGA |
fgOsCPK27-F1 | AAAGTGGCGAAGTTGCGGCGCGGG |
fgOsCPK27-R1 | GGCCCCCGCGCCGCAACTTCGCCA |
OsCPK16-HF1 | ggagtgagtacggtgtgcGTAAGACACCTCTTCACATTTCCC |
OsCPK16-HR1 | gagttggatgctggatggAAAAGGAGGAACTCCACATAACA |
OsCPK23-HF2 | ggagtgagtacggtgtgcCCTGTCCTTGGATACAAGACT |
OsCPK23-HR2 | gagttggatgctggatggGGTGCATTATCTGGATTTCAC |
OsCPK30-HF2 | ggagtgagtacggtgtgcATTGTGGCACTCGCTTTTTATC |
OsCPK30-HR2 | gagttggatgctggatggGAATAGTCATTTACAGACCAGAT |
OsCPK27-HF1 | ggagtgagtacggtgtgcTGTTGTGTGAAGAGAAGGTG |
OsCPK27-HR1 | gagttggatgctggatggAGGGGAGCACGACGGGGATGGA |
OsCPK11-HF1 | ggagtgagtacggtgtgcGCTTTTACATATTTTGAC |
OsCPK11-HR1 | gagttggatgctggatggTCTTGGATATTGTATAGTG |
OsCPK21-HF1 | ggagtgagtacggtgtgcGACAACGACGAGAAGATC |
OsCPK21-HR1 | gagttggatgctggatggTTAAGTTGTTTACTTACCAAG |
OsCPK4-HF2 | ggagtgagtacggtgtgcTGTGATTGAAGGCGATTT |
OsCPK4-HR2 | gagttggatgctggatggGAGTCATCTTCAAACGCA |
OsCPK14-HF1 | ggagtgagtacggtgtgcGCAACCGAACCCAAACCC |
OsCPK14-HR1 | gagttggatgctggatggGGGCAGCAGTTGCCCATG |
表2 引物序列信息
Table 2 Primer sequences
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
pUbi-PlmCasX-F1 | ATTCCCGGGTACCGGATCCGCCACCATGGCCCCTAAAAAGAAGAGA |
pUbi-PlmCasX-R1 | GAGCGTTTTCATTGGCCCGCGCTTACCAGCTTTTTTTGTGTTCGAGTCT |
pUbi-PlmCasX-F2 | AGACTCGAACACAAAAAAAGCTGGTAAGCGCGGGCCAATGAAAACGCTC |
pUbi-PlmCasX-R2 | ACGCGGCCATTGGCCAGCCTGAGCGATCCGGTTTCCAAGGACAACAAAT |
pUbi-PlmCasX-F3 | ATTTGTTGTCCTTGGAAACCGGATCGCTCAGGCTGGCCAATGGCCGCGT |
pUbi-PlmCasX-R3 | CCCGCAGTTGCTACACGTCCTAGATGTATATTGTGCCAATGTCTTTGAC |
pUbi-PlmCasX-F4 | GTCAAAGACATTGGCACAATATACATCTAGGACGTGTAGCAACTGCGGG |
pUbi-PlmCasX-R4 | CGATCGGGGAAATTCGAGCTCACTAGTTCAGACCTTGCGCTTCTT |
fgOsCPK16-F2 | AAAGCTTCAGCACTTCAGGAGCCA |
fgOsCPK16-R2 | GGCCTGGCTCCTGAAGTGCTGAAG |
fgOsCPK11-F2 | AAAGCCACAAGCTCGTTGAAGCTT |
fgOsCPK11-R2 | GGCCAAGCTTCAACGAGCTTGTGG |
fgOsCPK21-F1 | AAAGACAGGGAGCCATTGCCGAGG |
fgOsCPK21-R1 | GGCCCCTCGGCAATGGCTCCCTGT |
fgOsCPK23-F2 | AAAGCGAACTGTCCCTGTCCAAGC |
fgOsCPK23-R2 | GGCCGCTTGGACAGGGACAGTTCG |
fgOsCPK30-F3 | AAAGGATCCACGGATGACCTGCAG |
fgOsCPK30-R3 | GGCCCTGCAGGTCATCCGTGGATC |
fgOsCPK4-F2 | AAGCCCTGTTGCTGTGGAGGATG |
fgOsCPK4-R2 | GCCCATCCTCCACAGCAACAGGG |
fgOsCPK14-F1 | AAAGTCCCCACCTCCCCTTTATCG |
fgOsCPK14-R1 | GGCCCGATAAAGGGGAGGTGGGGA |
fgOsCPK27-F1 | AAAGTGGCGAAGTTGCGGCGCGGG |
fgOsCPK27-R1 | GGCCCCCGCGCCGCAACTTCGCCA |
OsCPK16-HF1 | ggagtgagtacggtgtgcGTAAGACACCTCTTCACATTTCCC |
OsCPK16-HR1 | gagttggatgctggatggAAAAGGAGGAACTCCACATAACA |
OsCPK23-HF2 | ggagtgagtacggtgtgcCCTGTCCTTGGATACAAGACT |
OsCPK23-HR2 | gagttggatgctggatggGGTGCATTATCTGGATTTCAC |
OsCPK30-HF2 | ggagtgagtacggtgtgcATTGTGGCACTCGCTTTTTATC |
OsCPK30-HR2 | gagttggatgctggatggGAATAGTCATTTACAGACCAGAT |
OsCPK27-HF1 | ggagtgagtacggtgtgcTGTTGTGTGAAGAGAAGGTG |
OsCPK27-HR1 | gagttggatgctggatggAGGGGAGCACGACGGGGATGGA |
OsCPK11-HF1 | ggagtgagtacggtgtgcGCTTTTACATATTTTGAC |
OsCPK11-HR1 | gagttggatgctggatggTCTTGGATATTGTATAGTG |
OsCPK21-HF1 | ggagtgagtacggtgtgcGACAACGACGAGAAGATC |
OsCPK21-HR1 | gagttggatgctggatggTTAAGTTGTTTACTTACCAAG |
OsCPK4-HF2 | ggagtgagtacggtgtgcTGTGATTGAAGGCGATTT |
OsCPK4-HR2 | gagttggatgctggatggGAGTCATCTTCAAACGCA |
OsCPK14-HF1 | ggagtgagtacggtgtgcGCAACCGAACCCAAACCC |
OsCPK14-HR1 | gagttggatgctggatggGGGCAGCAGTTGCCCATG |
图1 载体示意图 A:DpbCasX蛋白表达元件示意图; B:PlmCasX蛋白表达元件示意图;C:crRNA载体示意图
Fig. 1 Schematics of vector A : Schematics of DpbCasX expression components. B : Schematics of PlmCasX expression components. C : Schematics of crRNA vector
PAM序列 PAM seq | 基因 Gene | 工具载体 Tool carrier | 突变效率 Mutation efficiency | 单等位基因突变 Mono-allelic mutation | 双等位基因突变 Bi-allelic mutation |
---|---|---|---|---|---|
TTCG | OsCPK4 | DpbCasX | 0/48(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 13/56(23.21%) | 9/13(69.23%) | 4/13(30.77%) | ||
OsCPK30 | DpbCasX | 0/50(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/43(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
TTCA | OsCPK21 | DpbCasX | 7/40(17.50%) | 5/7(71.43%) | 2/7(28.57%) |
PlmCasX | 37/56(66.07%) | 22/37(59.46%) | 15/37(40.54%) | ||
TTCC | OsCPK23 | DpbCasX | 0/56(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 0/40(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
OsCPK14 | DpbCasX | 0/42(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/45(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
TTCT | OsCPK27 | DpbCasX | 0/42(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 0/45(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
OsCPK11 | DpbCasX | 0/40(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/56(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
表3 DpbCasX、PlmCasX编辑效率比较
Table 3 Comparison of editing efficiency among DpbCasX and PlmCasX
PAM序列 PAM seq | 基因 Gene | 工具载体 Tool carrier | 突变效率 Mutation efficiency | 单等位基因突变 Mono-allelic mutation | 双等位基因突变 Bi-allelic mutation |
---|---|---|---|---|---|
TTCG | OsCPK4 | DpbCasX | 0/48(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 13/56(23.21%) | 9/13(69.23%) | 4/13(30.77%) | ||
OsCPK30 | DpbCasX | 0/50(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/43(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
TTCA | OsCPK21 | DpbCasX | 7/40(17.50%) | 5/7(71.43%) | 2/7(28.57%) |
PlmCasX | 37/56(66.07%) | 22/37(59.46%) | 15/37(40.54%) | ||
TTCC | OsCPK23 | DpbCasX | 0/56(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 0/40(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
OsCPK14 | DpbCasX | 0/42(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/45(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
TTCT | OsCPK27 | DpbCasX | 0/42(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
PlmCasX | 0/45(0.00%) | 0/0(0.00%) | 0/0(0.00%) | ||
OsCPK11 | DpbCasX | 0/40(0.00%) | 0/0(0.00%) | 0/0(0.00%) | |
PlmCasX | 0/56(0.00%) | 0/0(0.00%) | 0/0(0.00%) |
图3 CRISPR/DpbCasX和CRISPR/PlmCasX系统打靶OsCPK4和OsCPK21基因高通量测序结果比较
Fig. 3 Comparison of high-throughput sequencing results of OsCPK4 and OsCPK21 genes targeted by CRISPR/DpbCasX and CRISPR/PlmCasX systems
[1] |
Chen KL, Wang YP, Zhang R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annu Rev Plant Biol, 2019, 70: 667-697.
doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493 |
[2] |
Ceasar SA, Rajan V, Prykhozhij SV, et al. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9[J]. Biochim Biophys Acta, 2016, 1863(9): 2333-2344.
doi: 10.1016/j.bbamcr.2016.06.009 pmid: 27350235 |
[3] |
Hille F, Richter H, Wong SP, et al. The biology of CRISPR-cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259.
doi: S0092-8674(17)31383-1 pmid: 29522745 |
[4] |
Shan QW, Wang YP, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8): 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338 |
[5] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[6] |
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607.
doi: 10.1038/nature09886 |
[7] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[8] |
Wang MX, Xu ZY, Gosavi G, et al. Targeted base editing in rice with CRISPR/ScCas9 system[J]. Plant Biotechnol J, 2020, 18(8): 1645-1647.
doi: 10.1111/pbi.13330 pmid: 31916673 |
[9] |
Hua K, Tao XP, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants[J]. Plant Biotechnol J, 2019, 17(2): 499-504.
doi: 10.1111/pbi.12993 pmid: 30051586 |
[10] |
Steinert J, Schiml S, Fauser F, et al. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus[J]. Plant J, 2015, 84(6): 1295-1305.
doi: 10.1111/tpj.2015.84.issue-6 URL |
[11] |
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63.
doi: 10.1038/nature26155 URL |
[12] |
Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441 |
[13] |
Ren B, Liu L, Li SF, et al. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice[J]. Mol Plant, 2019, 12(7): 1015-1026.
doi: S1674-2052(19)30123-6 pmid: 30928635 |
[14] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. |
[15] |
Li XS, Wang Y, Liu YJ, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36(4): 324-327.
doi: 10.1038/nbt.4102 pmid: 29553573 |
[16] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227 |
[17] |
Burstein D, Harrington LB, Strutt SC, et al. New CRISPR-cas systems from uncultivated microbes[J]. Nature, 2017, 542(7640): 237-241.
doi: 10.1038/nature21059 |
[18] |
Cao CC, Yao L, Li AL, et al. A CRISPR/dCasX-mediated transcriptional programming system for inhibiting the progression of bladder cancer cells by repressing c-MYC or activating TP53[J]. Clin Transl Med, 2021, 11(9): e537.
doi: 10.1002/ctm2.537 pmid: 34586743 |
[19] |
Roberson EDO. A catalog of CasX genome editing sites in common model organisms[J]. BMC Genomics, 2019, 20(1): 528.
doi: 10.1186/s12864-019-5924-6 pmid: 31248380 |
[20] |
Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors[J]. Nature, 2019, 566(7743): 218-223.
doi: 10.1038/s41586-019-0908-x |
[21] |
Yang H, Patel DJ. CasX: a new and small CRISPR gene-editing protein[J]. Cell Res, 2019, 29(5): 345-346.
doi: 10.1038/s41422-019-0165-4 pmid: 30992542 |
[22] | Chen YC, Hu YP, Wang XG, et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing[J]. Innovation(Camb), 2022, 3(4): 100264. |
[23] |
Zhou HB, Liu B, Weeks DP, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Res, 2014, 42(17): 10903-10914.
doi: 10.1093/nar/gku806 pmid: 25200087 |
[24] | 李超. 植物新型碱基编辑技术的开发及应用研究[D]. 北京: 中国科学院大学, 2020. |
Li C. Studies on developing new programmable base editors in plants and their applications[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
[25] |
Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994, 6(2): 271-282.
doi: 10.1046/j.1365-313x.1994.6020271.x pmid: 7920717 |
[26] |
Nguyen VC, Nguyen VK, Singh CH, et al. Fast recovery of transgenic submergence tolerant rice cultivars of North-East India by early co-cultivation of Agrobacterium with pre-cultured callus[J]. Physiol Mol Biol Plants, 2017, 23(1): 115-123.
doi: 10.1007/s12298-016-0398-3 URL |
[27] |
Tsuchida CA, Zhang SY, Doost MS, et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity[J]. Mol Cell, 2022, 82(6): 1199-1209.e6.
doi: 10.1016/j.molcel.2022.02.002 URL |
[28] |
王敬文, 严芳, 柳浪, 等. 水稻CRISPR/Cas12a系统的优化及其介导的腺嘌呤碱基编辑器的建立[J]. 生物技术通报, 2021, 37(6): 279-285.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0231 |
Wang JW, Yan F, Liu L, et al. Optimization of CRISPR/Cas12a system and development of itmediated adenine base editor in rice[J]. Biotechnol Bull, 2021, 37(6): 279-285. | |
[29] |
Roth MO, Li H. X marks the spot: mining the gold in CasX for gene editing[J]. Mol Cell, 2022, 82(6): 1083-1085.
doi: 10.1016/j.molcel.2022.02.024 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 刘佳慧, 刘叶, 花尔并, 王猛. 谷氨酸棒杆菌中胞嘧啶碱基编辑工具的PAM拓展[J]. 生物技术通报, 2023, 39(9): 49-57. |
[4] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[5] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[6] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[7] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[8] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[9] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[10] | 张祖霖, 刘方芳, 周青鸟, 赵瑞强, 贺菽嘉, 林文珍. 基于CRISPR/Cas9技术构建与鉴定敲除ACE2基因的Huh7肝癌细胞株[J]. 生物技术通报, 2023, 39(6): 181-188. |
[11] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[12] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[13] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[14] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[15] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||