生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 108-121.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0327
张严妍1,2,3,4(), 路笃贤1,2,3,4, 左新秀1,2,3,4, 李岩竣1,2,3,4, 林金星1,2,3,4, 崔亚宁1,2,3,4()
收稿日期:
2024-04-07
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
崔亚宁,女,副教授,研究方向:植物细胞分子生物学;E-mail: cuiyaning@bjfu.edu.cn作者简介:
张严妍,女,硕士研究生,研究方向:植物细胞分子生物学;E-mail: zyy3230184@bjfu.edu.cn
基金资助:
ZHANG Yan-yan1,2,3,4(), LU Du-xian1,2,3,4, ZUO Xin-xiu1,2,3,4, LI Yan-jun1,2,3,4, LIN Jin-xing1,2,3,4, CUI Ya-ning1,2,3,4()
Received:
2024-04-07
Published:
2024-10-26
Online:
2024-11-20
摘要:
RNA修饰是一类重要的表观遗传修饰,它是指在RNA分子的碱基或核糖上添加化学修饰基团。RNA甲基化和乙酰化是其中两种关键的修饰类型,它们通过调控生物的遗传信息来行使重要的生物功能。这两种修饰均是由writers(编码器)、erasers(消码器)和readers(解码器)三类调控因子进行动态可逆的调控,对RNA剪接、转运、翻译、运输和降解等代谢过程产生至关重要影响。近年来,随着RNA修饰检测技术的发展,研究者在植物中发现了一些新的RNA修饰位点,并证实了RNA的甲基化和乙酰化修饰在植物的生长发育以及应对生物和非生物胁迫方面起着关键的作用。本文首先概述了RNA修饰的类型及其生物学特性,并在此基础上重点回顾了近年来关于RNA甲基化和乙酰化调控因子的研究进展,最后总结了RNA甲基化和乙酰化在植物生长发育和应对胁迫过程中的功能,并展望了RNA修饰在植物中的一些新的研究方向,以期为进一步开展植物中的RNA甲基化和乙酰化修饰相关研究提供理论依据和新思路。
张严妍, 路笃贤, 左新秀, 李岩竣, 林金星, 崔亚宁. RNA甲基化与乙酰化修饰在植物生长发育过程中的研究进展[J]. 生物技术通报, 2024, 40(10): 108-121.
ZHANG Yan-yan, LU Du-xian, ZUO Xin-xiu, LI Yan-jun, LIN Jin-xing, CUI Ya-ning. Advances in Methylation and Acetylation Modification of RNA in Plant Growth and Development[J]. Biotechnology Bulletin, 2024, 40(10): 108-121.
修饰类型Type of modification | 生长发育Growth and development | 蛋白/基因Protein/Gene | 物种Species | 参考文献Reference |
---|---|---|---|---|
m6A | 影响种子发育 | MTA | 拟南芥 | [ |
对抗叶片衰老 | MTA | 拟南芥 | [ | |
调节光合作用 | At5g01920 | 拟南芥 | [ | |
促进果实成熟 | MTA, MTB, ALKBH2 | 草莓,番茄 | [ | |
影响光形态建成 | CRY1, FIP37 | 拟南芥 | [ | |
刺激器官发生 | ECT2, ECT3, ECT4 | 拟南芥 | [ | |
增强根系生长 分蘖芽形成 | FTO | 水稻,马铃薯 | [ | |
调控花期 | ALKBH10B | 拟南芥 | [ | |
m1A | 调节叶片发育 | PhTRMT61A | 矮牵牛 | [ |
m5C | 调节光合作用 叶绿体和质体发育 | TRM4B | 拟南芥 | [ |
影响根系发育 | AtTRM4a, AtTRM4b | 拟南芥 | [ | |
调节叶片发育 | PhNop2, ALYREF | 矮牵牛 | [ | |
ac4C | 调节种子发育 影响叶生长 | OsNAT10, AtNAT10a, AtNAT10b | 拟南芥,水稻 | [ |
促进果实成熟 | Solyc02g036350.3, Solyc06g053710.3等 | 番茄 | [ |
表1 RNA甲基化与乙酰化修饰在植物生长发育中的功能
Table 1 Function of RNA methylation and acetylation modifications in plant growth and development
修饰类型Type of modification | 生长发育Growth and development | 蛋白/基因Protein/Gene | 物种Species | 参考文献Reference |
---|---|---|---|---|
m6A | 影响种子发育 | MTA | 拟南芥 | [ |
对抗叶片衰老 | MTA | 拟南芥 | [ | |
调节光合作用 | At5g01920 | 拟南芥 | [ | |
促进果实成熟 | MTA, MTB, ALKBH2 | 草莓,番茄 | [ | |
影响光形态建成 | CRY1, FIP37 | 拟南芥 | [ | |
刺激器官发生 | ECT2, ECT3, ECT4 | 拟南芥 | [ | |
增强根系生长 分蘖芽形成 | FTO | 水稻,马铃薯 | [ | |
调控花期 | ALKBH10B | 拟南芥 | [ | |
m1A | 调节叶片发育 | PhTRMT61A | 矮牵牛 | [ |
m5C | 调节光合作用 叶绿体和质体发育 | TRM4B | 拟南芥 | [ |
影响根系发育 | AtTRM4a, AtTRM4b | 拟南芥 | [ | |
调节叶片发育 | PhNop2, ALYREF | 矮牵牛 | [ | |
ac4C | 调节种子发育 影响叶生长 | OsNAT10, AtNAT10a, AtNAT10b | 拟南芥,水稻 | [ |
促进果实成熟 | Solyc02g036350.3, Solyc06g053710.3等 | 番茄 | [ |
修饰类型 Type of modification | 胁迫类型 Type of stress | 蛋白/基因 Protein/ Gene | 物种 Species | 参考文献 Reference |
---|---|---|---|---|
m6A | 干旱胁迫 | MdMTA | 苹果 | [ |
HrALKBH10B, HrALKBH10C, HrALKBH10D | 沙棘 | [ | ||
低温胁迫 | MTA | 拟南芥 | [ | |
强光胁迫 | VIR | 拟南芥 | [ | |
生物胁迫 | OsAGO18, OsSLRL1, MTA, HAKAI, NbECT 2A/B/C, ALKBH10B | 水稻、本氏烟草、番茄、拟南芥 | [ | |
m1A | 低温胁迫 | At2g45730, At5g14600 | 拟南芥 | [ |
盐胁迫 | LOC_Os04g02150等 | 水稻 | ||
m7G | 低温胁迫 盐胁迫 | At5g24840, At1g03110, LOC_Os06g12990等 | 拟南芥 水稻 | [ |
m5C | 氧化胁迫 | TRM4B | 拟南芥 | [ |
表2 RNA甲基化与乙酰化修饰在胁迫应答中的功能
Table 2 Function of RNA methylation and acetylation modifications in stress response
修饰类型 Type of modification | 胁迫类型 Type of stress | 蛋白/基因 Protein/ Gene | 物种 Species | 参考文献 Reference |
---|---|---|---|---|
m6A | 干旱胁迫 | MdMTA | 苹果 | [ |
HrALKBH10B, HrALKBH10C, HrALKBH10D | 沙棘 | [ | ||
低温胁迫 | MTA | 拟南芥 | [ | |
强光胁迫 | VIR | 拟南芥 | [ | |
生物胁迫 | OsAGO18, OsSLRL1, MTA, HAKAI, NbECT 2A/B/C, ALKBH10B | 水稻、本氏烟草、番茄、拟南芥 | [ | |
m1A | 低温胁迫 | At2g45730, At5g14600 | 拟南芥 | [ |
盐胁迫 | LOC_Os04g02150等 | 水稻 | ||
m7G | 低温胁迫 盐胁迫 | At5g24840, At1g03110, LOC_Os06g12990等 | 拟南芥 水稻 | [ |
m5C | 氧化胁迫 | TRM4B | 拟南芥 | [ |
[1] | Waddington CH. The epigenotype[J]. Endeavour, 1942, 1: 18-20. |
[2] |
Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography[J]. J Biol Chem, 1948, 175(1): 315-332.
pmid: 18873306 |
[3] | Zhang L, Xu XN, Su XL. Modifications of noncoding RNAs in cancer and their therapeutic implications[J]. Cell Signal, 2023, 108: 110726. |
[4] | Liu YB, Liu SZ, Yan L, et al. Contribution of m5C RNA modification-related genes to prognosis and immunotherapy prediction in patients with ovarian cancer[J]. Mediators Inflamm, 2023, 2023: 1400267. |
[5] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
[6] | Zhong SL, Li HY, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J]. Plant Cell, 2008, 20(5): 1278-1288. |
[7] |
Nichols JL, Welder L. A modified nucleotide in the poly(A)tract of maize RNA[J]. Biochim Biophys Acta, 1981, 652(1): 99-108.
pmid: 6163465 |
[8] |
Kennedy TD, Lane BG. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5'-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos[J]. Can J Biochem, 1979, 57(6): 927-931.
pmid: 476526 |
[9] | Jiang XL, Liu BY, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. |
[10] |
Ozanick S, Krecic A, Andersland J, et al. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans[J]. RNA, 2005, 11(8): 1281-1290.
pmid: 16043508 |
[11] |
Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs[J]. RNA, 2012, 18(12): 2269-2276.
doi: 10.1261/rna.035600.112 pmid: 23097428 |
[12] | Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes[J]. Nucleic Acids Res, 2005, 33(Database issue): D139-D140. |
[13] |
Suzuki T, Yashiro Y, Kikuchi I, et al. Complete chemical structures of human mitochondrial tRNAs[J]. Nat Commun, 2020, 11(1): 4269.
doi: 10.1038/s41467-020-18068-6 pmid: 32859890 |
[14] | Roovers M, Kaminska KH, Tkaczuk KL, et al. The YqfN protein of Bacillus subtilis is the tRNA: m1A22 methyltransferase(TrmK)[J]. Nucleic Acids Res, 2008, 36(10): 3252-3262. |
[15] |
Grosjean H, Auxilien S, Constantinesco F, et al. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review[J]. Biochimie, 1996, 78(6): 488-501.
pmid: 8915538 |
[16] |
Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function[J]. RNA Biol, 2017, 14(9): 1138-1152.
doi: 10.1080/15476286.2016.1259781 pmid: 27911188 |
[17] | Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA[J]. Nature, 2016, 530(7591): 441-446. |
[18] | Li XY, Xiong XS, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome[J]. Nat Chem Biol, 2016, 12: 311-316. |
[19] |
Squires JE, Preiss T. Function and detection of 5-methylcytosine in eukaryotic RNA[J]. Epigenomics, 2010, 2(5): 709-715.
doi: 10.2217/epi.10.47 pmid: 22122054 |
[20] |
Motorin Y, Helm M. tRNA stabilization by modified nucleotides[J]. Biochemistry, 2010, 49(24): 4934-4944.
doi: 10.1021/bi100408z pmid: 20459084 |
[21] |
Gigova A, Duggimpudi S, Pollex T, et al. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability[J]. RNA, 2014, 20(10): 1632-1644.
doi: 10.1261/rna.043398.113 pmid: 25125595 |
[22] | David R, Burgess A, Parker B, et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs[J]. Plant Cell, 2017, 29(3): 445-460. |
[23] | Cui XA, Liang Z, Shen LS, et al. 5-methylcytosine RNA methylation in Arabidopsis thaliana[J]. Mol Plant, 2017, 10(11): 1387-1399. |
[24] |
Cowling VH. Regulation of mRNA cap methylation[J]. Biochem J, 2009, 425(2): 295-302.
doi: 10.1042/BJ20091352 pmid: 20025612 |
[25] | Chen C, Chao YH, Zhang CC, et al. TROP2 translation mediated by dual m6A/m7G RNA modifications promotes bladder cancer development[J]. Cancer Lett, 2023, 566: 216246. |
[26] |
Deng K, Li JX, Yang R, et al. Identification and validation of a novel prognostic model for gastric cancer based on m7G-related genes[J]. Transl Cancer Res, 2023, 12(7): 1836-1851.
doi: 10.21037/tcr-22-2614 pmid: 37588749 |
[27] | Shi M, Zhu SS, Sun LY, et al. Transcriptome-wide dynamics of m7G-related LncRNAs during the progression from HBV infection to hepatocellular carcinoma[J]. Front Biosci(Landmark Ed), 2023, 28(12): 339. |
[28] | Létoquart J, Huvelle E, Wacheul L, et al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes[J]. Proc Natl Acad Sci USA, 2014, 111(51): E5518-E5526. |
[29] |
Zhang LS, Liu C, Ma HH, et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA[J]. Mol Cell, 2019, 74(6): 1304-1316.e8.
doi: S1097-2765(19)30265-5 pmid: 31031084 |
[30] |
Oliva R, Cavallo L, Tramontano A. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions[J]. Nucleic Acids Res, 2006, 34(3): 865-879.
pmid: 16461956 |
[31] |
Kowalski S, Yamane T, Fresco JR. Nucleotide sequence of the “denaturable” leucine transfer RNA from yeast[J]. Science, 1971, 172(3981): 385-387.
pmid: 4927676 |
[32] | Tardu M, Jones JD, Kennedy RT, et al. Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs[J]. ACS Chem Biol, 2019, 14(7): 1403-1409. |
[33] | Ito S, Akamatsu Y, Noma A, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae[J]. J Biol Chem, 2014, 289(38): 26201-26212. |
[34] |
Taniguchi T, Miyauchi K, Sakaguchi Y, et al. Acetate-dependent tRNA acetylation required for decoding fidelity in protein synthesis[J]. Nat Chem Biol, 2018, 14(11): 1010-1020.
doi: 10.1038/s41589-018-0119-z pmid: 30150682 |
[35] |
Orita I, Futatsuishi R, Adachi K, et al. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance[J]. Nucleic Acids Res, 2019, 47(4): 1964-1976.
doi: 10.1093/nar/gky1313 pmid: 30605516 |
[36] |
Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency[J]. Cell, 2018, 175(7): 1872-1886.e24.
doi: S0092-8674(18)31383-7 pmid: 30449621 |
[37] | Parthasarathy R, Ginell SL, De NC, et al. Conformation of N4-acetylcytidine, a modified nucleoside of tRNA, and stereochemistry of codon-anticodon interaction[J]. Biochem Biophys Res Commun, 1978, 83(2): 657-663. |
[38] | Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)D[J]. Genes Dev, 2018, 32(5-6): 415-429. |
[39] | Patil DP, Chen CK, Pickering BF, et al. M(6)a RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. |
[40] |
Pendleton KE, Chen BB, Liu KQ, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.e14.
doi: S0092-8674(17)30530-5 pmid: 28525753 |
[41] |
Jia GF, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887.
doi: 10.1038/nchembio.687 pmid: 22002720 |
[42] |
Zheng GQ, Dahl JA, Niu YM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
doi: 10.1016/j.molcel.2012.10.015 pmid: 23177736 |
[43] |
Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain[J]. Nat Chem Biol, 2014, 10: 927-929.
doi: 10.1038/nchembio.1654 pmid: 25242552 |
[44] | Liu N, Dai Q, Zheng GQ, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564. |
[45] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45(10): 6051-6063.
doi: 10.1093/nar/gkx141 pmid: 28334903 |
[46] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308.
doi: 10.1016/j.cell.2015.08.011 pmid: 26321680 |
[47] | Huang HL, Weng HY, Sun WJ, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. |
[48] |
Edupuganti RR, Geiger S, Lindeboom RGH, et al. N6-methyladenosine(m6A)recruits and repels proteins to regulate mRNA homeostasis[J]. Nat Struct Mol Biol, 2017, 24(10): 870-878.
doi: 10.1038/nsmb.3462 pmid: 28869609 |
[49] |
Anderson J, Phan L, Hinnebusch AG. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine)methyltransferase of Saccharomyces cerevisiae[J]. Proc Natl Acad Sci USA, 2000, 97(10): 5173-5178.
pmid: 10779558 |
[50] | Kadaba S, Krueger A, Trice T, et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae[J]. Genes Dev, 2004, 18(11): 1227-1240. |
[51] |
Howell NW, Jora M, Jepson BF, et al. Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B[J]. RNA, 2019, 25(10): 1366-1376.
doi: 10.1261/rna.072090.119 pmid: 31292261 |
[52] | Xu BF, Liu DY, Wang ZR, et al. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family[J]. Cell Mol Life Sci, 2021, 78(1): 129-141. |
[53] |
Motorin Y, Grosjean H. Multisite-specific tRNA: m5C-methyltransferase(Trm4)in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme[J]. RNA, 1999, 5(8): 1105-1118.
pmid: 10445884 |
[54] | Gu WF, Hurto RL, Hopper AK, et al. Depletion of Saccharomyces cerevisiae tRNA(His)guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C[J]. Mol Cell Biol, 2005, 25(18): 8191-8201. |
[55] |
Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m5C methyltransferases from searching genomic and proteomic sequences[J]. Nucleic Acids Res, 1999, 27(15): 3138-3145.
pmid: 10454610 |
[56] |
Sharma S, Yang J, Watzinger P, et al. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively[J]. Nucleic Acids Res, 2013, 41(19): 9062-9076.
doi: 10.1093/nar/gkt679 pmid: 23913415 |
[57] | Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage[J]. Genes Dev, 2010, 24(15): 1590-1595. |
[58] |
Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader[J]. Cell Res, 2017, 27(5): 606-625.
doi: 10.1038/cr.2017.55 pmid: 28418038 |
[59] |
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions[J]. Nucleic Acids Res, 2010, 38(5): 1415-1430.
doi: 10.1093/nar/gkp1117 pmid: 20007150 |
[60] | Frye M, Watt FM. The RNA methyltransferase Misu(NSun2)mediates Myc-induced proliferation and is upregulated in tumors[J]. Curr Biol, 2006, 16(10): 971-981. |
[61] | Van Haute L, Dietmann S, Kremer L, et al. Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3[J]. Nat Commun, 2016, 7: 12039. |
[62] |
Boriack-Sjodin PA, Ribich S, Copeland RA. RNA-modifying proteins as anticancer drug targets[J]. Nat Rev Drug Discov, 2018, 17(6): 435-453.
doi: 10.1038/nrd.2018.71 pmid: 29773918 |
[63] |
Schosserer M, Minois N, Angerer TB, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan[J]. Nat Commun, 2015, 6: 6158.
doi: 10.1038/ncomms7158 pmid: 25635753 |
[64] |
Harris T, Marquez B, Suarez S, et al. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases[J]. Biol Reprod, 2007, 77(2): 376-382.
pmid: 17442852 |
[65] | Zhou Z, Luo MJ, Straesser K, et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans[J]. Nature, 2000, 407(6802): 401-405. |
[66] |
Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA[J]. RNA, 2002, 8(10): 1253-1266.
pmid: 12403464 |
[67] |
Leulliot N, Chaillet M, Durand D, et al. Structure of the yeast tRNA m7G methylation complex[J]. Structure, 2008, 16(1): 52-61.
doi: 10.1016/j.str.2007.10.025 pmid: 18184583 |
[68] |
Trotman JB, Giltmier AJ, Mukherjee C, et al. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs[J]. Nucleic Acids Res, 2017, 45(18): 10726-10739.
doi: 10.1093/nar/gkx801 pmid: 28981715 |
[69] |
Grasso L, Suska O, Davidson L, et al. mRNA cap methylation in pluripotency and differentiation[J]. Cell Rep, 2016, 16(5): 1352-1365.
doi: S2211-1247(16)30858-0 pmid: 27452456 |
[70] |
Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA[J]. RNA, 2015, 21(2): 180-187.
doi: 10.1261/rna.047910.114 pmid: 25525153 |
[71] |
Shen Q, Zheng XZ, McNutt MA, et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules[J]. Exp Cell Res, 2009, 315(10): 1653-1667.
doi: 10.1016/j.yexcr.2009.03.007 pmid: 19303003 |
[72] |
Liu XF, Tan YQ, Zhang CF, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2[J]. EMBO Rep, 2016, 17(3): 349-366.
doi: 10.15252/embr.201540505 pmid: 26882543 |
[73] |
张雪, 汤华. 乙酰转移酶10通过介导盘状蛋白结构域受体1mRNA的ac4C乙酰化修饰促进宫颈癌细胞的恶性行为[J]. 中国生物化学与分子生物学报, 2022, 38(5): 603-613.
doi: 10.13865/j.cnki.cjbmb.2022.04.0044 |
Zhang X, Tang H. NAT10 promotes cervical cancer cell malignant behavior via N4-acetylcytidine modification of DDR1 mRNA[J]. Chin J Biochem Mol Biol, 2022, 38(5): 603-613.
doi: 10.13865/j.cnki.cjbmb.2022.04.0044 |
|
[74] |
Hao HJ, Liu WC, Miao YJ, et al. N4-acetylcytidine regulates the replication and pathogenicity of enterovirus 71[J]. Nucleic Acids Res, 2022, 50(16): 9339-9354.
doi: 10.1093/nar/gkac675 pmid: 35971620 |
[75] | Wang K, Zhou LY, Liu F, et al. PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac4 C acetylation of tfec mRNA[J]. Adv Sci, 2022, 9(8): e2106058. |
[76] | Sheikh AH, Tabassum N, Rawat A, et al. m6A RNA methylation counteracts dark-induced leaf senescence in Arabidopsis[J]. Plant Physiol, 2024, 194(4): 2663-2678. |
[77] | Zhang Y, Wang JH, Ma WJ, et al. Transcriptome-wide m6A methylation in natural yellow leaf of Catalpa fargesii[J]. Front Plant Sci, 2023, 14: 1167789. |
[78] | Amara U, Hu JZ, Cai J, et al. FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis[J]. Mol Plant, 2023, 16(5): 919-929. |
[79] | Luo GZ, MacQueen A, Zheng GQ, et al. Unique features of the m6A methylome in Arabidopsis thaliana[J]. Nat Commun, 2014, 5: 5630. |
[80] | Zhou LL, Tang RK, Li XJ, et al. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner[J]. Genome Biol, 2021, 22(1): 168. |
[81] | Yang JX, Li L, Li X, et al. The blue light receptor CRY1 interacts with FIP37 to promote N6-methyladenosine RNA modification and photomorphogenesis in Arabidopsis[J]. New Phytol, 2023, 237(3): 840-854. |
[82] | Arribas-Hernández L, Simonini S, Hansen MH, et al. Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis[J]. Development, 2020, 147(14): dev189134. |
[83] |
Yu Q, Liu S, Yu L, et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials[J]. Nat Biotechnol, 2021, 39(12): 1581-1588.
doi: 10.1038/s41587-021-00982-9 pmid: 34294912 |
[84] | Duan HC, Wei LH, Zhang C, et al. ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition[J]. Plant Cell, 2017, 29(12): 2995-3011. |
[85] | Zhou LL, Tian SP, Qin GZ. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening[J]. Genome Biol, 2019, 20(1): 156. |
[86] | Yang WY, Meng J, Liu JX, et al. The N1-methyladenosine methylome of Petunia mRNA[J]. Plant Physiol, 2020, 183(4): 1710-1724. |
[87] | Zhang DL, Guo WJ, Wang T, et al. RNA 5-methylcytosine modification regulates vegetative development associated with H3K27 trimethylation in Arabidopsis[J]. Adv Sci, 2022, 10(1): e2204885. |
[88] | Wang YM, Pang CQ, Li XK, et al. Identification of tRNA nucleoside modification genes critical for stress response and development in rice and Arabidopsis[J]. BMC Plant Biol, 2017, 17(1): 261. |
[89] | 覃晓春. 矮牵牛RNA m5C修饰相关蛋白功能初步探索[D]. 广州: 华南农业大学, 2020. |
Qin XC. A preliminary exploration of the RNA m5C modification-related proteins functions in Petunia hybrida[D]. Guangzhou: South China Agricultural University, 2020. | |
[90] | Li B, Li DH, Cai LJ, et al. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa[J]. Mol Plant, 2023, 16(6): 1082-1098. |
[91] | Wang WL, Liu HJ, Wang FF, et al. N4-acetylation of cytidine in mRNA plays essential roles in plants[J]. Plant Cell, 2023, 35(10): 3739-3756. |
[92] | Ma LL, Zheng YY, Zhou ZJ, et al. Dissection of mRNA ac4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene[J]. Mol Hortic, 2024, 4(1): 5. |
[93] | Hou N, Li CS, He JQ, et al. MdMTA-mediated m6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress[J]. New Phytol, 2022, 234(4): 1294-1314. |
[94] | Zhang GY, Lv ZR, Diao SF, et al. Unique features of the m6A methylome and its response to drought stress in sea buckthorn(Hippophae rhamnoides Linn.)[J]. RNA Biol, 2021, 18(sup2): 794-803. |
[95] | Wang S, Wang HY, Xu ZH, et al. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis[J]. Plant Physiol, 2023, 192(2): 1466-1482. |
[96] |
Zhang M, Zeng YP, Peng R, et al. N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants[J]. Nat Commun, 2022, 13(1): 7441.
doi: 10.1038/s41467-022-35146-z pmid: 36460653 |
[97] |
Zhang K, Zhuang XJ, Dong ZZ, et al. The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses[J]. Genome Biol, 2021, 22(1): 189.
doi: 10.1186/s13059-021-02410-2 pmid: 34167554 |
[98] | He H, Ge LH, Chen YL, et al. m6A modification of plant virus enables host recognition by NMD factors in plants[J]. Sci China Life Sci, 2024, 67(1): 161-174. |
[99] | Prall W, Sheikh AH, Bazin J, et al. Pathogen-induced m6A dynamics affect plant immunity[J]. Plant Cell, 2023, 35(11): 4155-4172. |
[1] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[2] | 侯智涵, 郝楠, 李佳琪, 赵斌, 刘颖超. RNA m1A和m5C甲基化修饰在拟轮枝镰孢伏马毒素生物合成中的作用[J]. 生物技术通报, 2024, 40(9): 282-290. |
[3] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[4] | 李勇慧, 鲍星星, 段一珂, 赵运霞, 于相丽, 陈尧, 张延召. 灵宝杜鹃bZIP家族全基因组鉴定及表达特征分析[J]. 生物技术通报, 2024, 40(8): 186-198. |
[5] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[6] | 刘丹丹, 王雷刚, 孙明慧, 焦小雨, 吴琼, 王文杰. 茶树海藻糖-6-磷酸合成酶(TPS)基因家族鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 152-163. |
[7] | 余纽, 柳帆, 杨锦昌. 油楠SgTPS7的克隆及其在萜类生物合成和非生物胁迫中的功能[J]. 生物技术通报, 2024, 40(8): 164-173. |
[8] | 卢茜, 袁月, 李丹, 张鹏. Tet-On系统中多西环素对MBD1诱导表达的调控研究[J]. 生物技术通报, 2024, 40(8): 47-52. |
[9] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
[10] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[11] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[12] | 王立超, 李欢, 盛若成, 李敏, 陈凤毛. 乙酰化修饰在植物病原物致病过程中的作用[J]. 生物技术通报, 2024, 40(5): 1-12. |
[13] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[14] | 袁明波, 叶国华, 杨丹, 宋冬雪. DNA甲基化测序技术研究进展[J]. 生物技术通报, 2024, 40(5): 58-65. |
[15] | 杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||