生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 14-24.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1131
收稿日期:
2023-12-01
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
陈露,女,博士,研究员,研究方向:玉米基因组与大数据;E-mail: chenlu2023@zju.edu.cn作者简介:
胡伊娃,女,硕士研究生,研究方向:玉米基因组;E-mail: 22316143@zju.edu.cn
基金资助:
Received:
2023-12-01
Published:
2024-03-26
Online:
2024-04-08
摘要:
气候变化为粮食生产、生态系统的稳定性带来了重要的挑战。在极端气候变化下,发展适应性物种是作物遗传育种的重要目标之一。作为重要的作物之一,玉米在经历强烈的驯化瓶颈之后,已经丢失了大量的遗传多样性,特别是一些与生物和非生物胁迫相关的位点。在野生种和农家种中寻找玉米驯化过程中丢失的遗传多样性,并将其应用于现代遗传育种中,将为适应性新品种的创制提供新的契机。本文在对大刍草(玉米野生近亲)的发现及分类研究进行介绍之后,进一步总结了大刍草和玉米的性状与基因组差异,并综述了目前基于遗传学、群体遗传学、分子生物学等对大刍草和玉米之间差异遗传机理剖析的进展,多角度表明了大刍草在玉米遗传学研究中的重要性。最后,对未来气候变化下大刍草在玉米育种中的重要性提出了展望。
胡伊娃, 陈露. 玉米野生种基因组研究进展及应用[J]. 生物技术通报, 2024, 40(3): 14-24.
HU Yi-wa, CHEN Lu. Research Advance and Applications in Maize Wild Relatives Genomes[J]. Biotechnology Bulletin, 2024, 40(3): 14-24.
玉米自交系/农家种 Maize inbred line/landrace | 大刍草 Teosinte | 群体类型 Population type | 群体大小 Population size | 性状数目 Number of traits | 性状类型 Type of traits | 标记类型 Type of markers | 标记数目 Number of markers | QTL数目 Number of QTL | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
Nay 15 | parviglumis | F2 | 290 | 9 | 形态学 | RFLPs | 82 | 50 | [ |
Sin 2 | meixcana | F2 | 260 | 12 | 形态学 | RFLPs | 58 | 64 | [ |
W22 | parviglumis | BC1 | 1 749 | 22 | 形态学 | SNPs(InDels)/EST | 304 | 59 | [ |
A661 | parviglumis | F2:3 | 165 | 1 | 形态学 | SNPs/GBS | 2 659 | 2 | [ |
B73 | diploperennis | BC2F1 | 215 | 24 | 农艺和产量 | SNPs/WGS | 4 964 439 | 71 | [ |
W22 | parviglumis | BC1S4 | 223 | 22 | 农艺和驯化 | SNPs/GBS | 13 088 | 82 | [ |
parviglumis | BC1S4 | 270 | 16 109 | ||||||
parviglumis | BC1S4 | 219 | 13 187 | ||||||
parviglumis | BC1S4 | 235 | 11 395 | ||||||
mexicana | BC1S4 | 310 | 14 884 | ||||||
W22 | parviglumis | BC2S3 | 866 | 6 | 地下节根数 | SNPs/GBS | 19 838 | 133 | [ |
W22 | parviglumis | BC2S3 | 866 | 1 | 源和汇相关性状 | SNPs/GBS | 19 838 | 16 | [ |
W22 | parviglumis | BC2S3 | 866 | 4 | 叶片数目,开花期 | SNPs/GBS | 19 838 | 73 | [ |
Mo17 | mexicana | BC2F5 | 191 | 3 | 开花期性状 | SNPs/芯片 | 12 390 | 16 | [ |
W22 | parviglumis | BC2S3 | 866 | 5 | 雄穗 | SNPs/GBS | 19 838 | 72 | [ |
SICAU1212 | mexicana | F2 | 409 | 1 | 雌穗 | SNPs/OPA | 3 072 | 1 | [ |
SICAU1212 | mexicana | BC3F2 | ~300 | 1 | 雌穗 | SNPs/WGS | NA | 23 | [ |
BC4F2 | |||||||||
Mo17 | parviglumis | BC2F8 | 191 | 3 | 苞叶 | SNPs/芯片 | 12 390 | 4 | [ |
A158 | parviglumis | BC4F2 | 116 | 3 | 叶鞘 | RFLPs | 24 | 10 | [ |
B73 | parviglumis | BC4S2 | 58 | 3 | 籽粒成份 | SNPs/芯片 | 728 | 11 | [ |
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4DH | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
B73 | 10 parviglumis | BC4S2 | 58 | 8 | 籽粒形态 | SNPs/芯片 | 728 | 63 | [ |
B73 | 10 parviglumis | BC4S2 | 58 | 3 | 产量 | SNPs/芯片 | 728 | 15 | [ |
PH4CV | mexicana | BC2F6 | 206 | 1 | 根系 | SNPs/WGS | 138 208 | 2 | [ |
Mo17 | mexicana | BC2S7 | 191 | 9 | 根系解剖结构 | SNPs/芯片 | 56 110 | 16 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 1 | 抗涝 | SSRs | 98 | 4 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 3 | 抗涝 | SSRs | 98 | 1 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 1 | 抗涝 | SSRs | 98 | 4 | [ |
Rhee Flint | diploperennis | F1 | 3 | 1 | 多年生 | GBS/ SNPs | 10 432 | 2 | [ |
B73 | |||||||||
Mo17 | |||||||||
W22 | parviglumis | BC2S3 | 841 | 8 | 顶端分生组织形态 | SNPs/GBS | 19 838 | 36 | [ |
Mo17 | mexicana | BC2F7 | 191 | 65 | 初级代谢物 | SNPs/芯片 | 12 390 | 350 | [ |
B73 | parviglumis | BC2F8 | 113 | 1 | 病害 | SNPs/WGS | NA | 3 | [ |
B73 | diploperennis | BC2F8 | 215 | ||||||
Zheng58 | parviglumis | BC2F8 | 122 | ||||||
W22 | parviglumis | BC2S3 | 866 | 1 | 产量 | SNPs/GBS | 19 838 | 1 | [ |
B73 | 10 parviglumis | BC4S2 | 928 | 1 | 病害 | SNPs/芯片 | 728 | 1 | [ |
表1 玉米-大刍草QTL定位群体详细信息
Table 1 Detail informations of maize-teosinte QTL mapping populations
玉米自交系/农家种 Maize inbred line/landrace | 大刍草 Teosinte | 群体类型 Population type | 群体大小 Population size | 性状数目 Number of traits | 性状类型 Type of traits | 标记类型 Type of markers | 标记数目 Number of markers | QTL数目 Number of QTL | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
Nay 15 | parviglumis | F2 | 290 | 9 | 形态学 | RFLPs | 82 | 50 | [ |
Sin 2 | meixcana | F2 | 260 | 12 | 形态学 | RFLPs | 58 | 64 | [ |
W22 | parviglumis | BC1 | 1 749 | 22 | 形态学 | SNPs(InDels)/EST | 304 | 59 | [ |
A661 | parviglumis | F2:3 | 165 | 1 | 形态学 | SNPs/GBS | 2 659 | 2 | [ |
B73 | diploperennis | BC2F1 | 215 | 24 | 农艺和产量 | SNPs/WGS | 4 964 439 | 71 | [ |
W22 | parviglumis | BC1S4 | 223 | 22 | 农艺和驯化 | SNPs/GBS | 13 088 | 82 | [ |
parviglumis | BC1S4 | 270 | 16 109 | ||||||
parviglumis | BC1S4 | 219 | 13 187 | ||||||
parviglumis | BC1S4 | 235 | 11 395 | ||||||
mexicana | BC1S4 | 310 | 14 884 | ||||||
W22 | parviglumis | BC2S3 | 866 | 6 | 地下节根数 | SNPs/GBS | 19 838 | 133 | [ |
W22 | parviglumis | BC2S3 | 866 | 1 | 源和汇相关性状 | SNPs/GBS | 19 838 | 16 | [ |
W22 | parviglumis | BC2S3 | 866 | 4 | 叶片数目,开花期 | SNPs/GBS | 19 838 | 73 | [ |
Mo17 | mexicana | BC2F5 | 191 | 3 | 开花期性状 | SNPs/芯片 | 12 390 | 16 | [ |
W22 | parviglumis | BC2S3 | 866 | 5 | 雄穗 | SNPs/GBS | 19 838 | 72 | [ |
SICAU1212 | mexicana | F2 | 409 | 1 | 雌穗 | SNPs/OPA | 3 072 | 1 | [ |
SICAU1212 | mexicana | BC3F2 | ~300 | 1 | 雌穗 | SNPs/WGS | NA | 23 | [ |
BC4F2 | |||||||||
Mo17 | parviglumis | BC2F8 | 191 | 3 | 苞叶 | SNPs/芯片 | 12 390 | 4 | [ |
A158 | parviglumis | BC4F2 | 116 | 3 | 叶鞘 | RFLPs | 24 | 10 | [ |
B73 | parviglumis | BC4S2 | 58 | 3 | 籽粒成份 | SNPs/芯片 | 728 | 11 | [ |
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4DH | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
parviglumis | BC4S2 | ||||||||
B73 | 10 parviglumis | BC4S2 | 58 | 8 | 籽粒形态 | SNPs/芯片 | 728 | 63 | [ |
B73 | 10 parviglumis | BC4S2 | 58 | 3 | 产量 | SNPs/芯片 | 728 | 15 | [ |
PH4CV | mexicana | BC2F6 | 206 | 1 | 根系 | SNPs/WGS | 138 208 | 2 | [ |
Mo17 | mexicana | BC2S7 | 191 | 9 | 根系解剖结构 | SNPs/芯片 | 56 110 | 16 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 1 | 抗涝 | SSRs | 98 | 4 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 3 | 抗涝 | SSRs | 98 | 1 | [ |
Mi29 | nicaraguensis | BC3F5 | 45 | 1 | 抗涝 | SSRs | 98 | 4 | [ |
Rhee Flint | diploperennis | F1 | 3 | 1 | 多年生 | GBS/ SNPs | 10 432 | 2 | [ |
B73 | |||||||||
Mo17 | |||||||||
W22 | parviglumis | BC2S3 | 841 | 8 | 顶端分生组织形态 | SNPs/GBS | 19 838 | 36 | [ |
Mo17 | mexicana | BC2F7 | 191 | 65 | 初级代谢物 | SNPs/芯片 | 12 390 | 350 | [ |
B73 | parviglumis | BC2F8 | 113 | 1 | 病害 | SNPs/WGS | NA | 3 | [ |
B73 | diploperennis | BC2F8 | 215 | ||||||
Zheng58 | parviglumis | BC2F8 | 122 | ||||||
W22 | parviglumis | BC2S3 | 866 | 1 | 产量 | SNPs/GBS | 19 838 | 1 | [ |
B73 | 10 parviglumis | BC4S2 | 928 | 1 | 病害 | SNPs/芯片 | 728 | 1 | [ |
亲本Parent | 性状Trait | 基因名Gene name | 基因号Gene ID | 参考文献Reference |
---|---|---|---|---|
W22×parviglumis | 分蘖数 | tb1 | Zm00001d033673 | [ |
W22×parviglumis | 颖壳 | tga1 | Zm00001d049822 | [ |
W22×parviglumis | 繁殖率(雌穗数目) | gt1 | Zm00001d028129 | [ |
W22×parviglumis | 开花期 | zagl1 | Zm00001d017614 | [ |
W22×parviglumis | 开花期 | ZmCCT10 | Zm00001d024909 | [ |
W22×parviglumis | 营养生长转换 | gl15 | Zm00001d046621 | [ |
W22×parviglumis | 叶夹角 | UPA1, UPA2 | Zm00001d002562, Zm00001d033180 | [ |
B73×mexicana | 穗行数 | KRN2 | Zm00001d002641 | [ |
W22×parviglumis | 开花期 | ZCN8 | Zm00001d010752 | [ |
W22×parviglumis | 开花期 | ZmMADS69 | Zm00001d031625 | [ |
W22×parviglumis | 开花期 | ZmCCT9 | Zm00001d000176 | [ |
B73×parviglumis | 籽粒蛋白含量 | TPH9 | Zm00001d047736 | [ |
W22×parviglumis | 醇溶蛋白 | pbf1 | Zm00001d005100 | [ |
Mo17×mexicana | 籽粒类胡萝卜素含量 | DXS2 | Zm00001d019060 | [ |
W22×parviglumis | K+稳态 | ZmHKT2 | Zm00001d014680 | [ |
Mo17×mexicana | 广谱抗性 | ZmMM1 | Zm00001d018698 | [ |
表2 玉米-大刍草群体精细定位到的关键基因
Table 2 Fine-mapped key genes in maize-teosinte population
亲本Parent | 性状Trait | 基因名Gene name | 基因号Gene ID | 参考文献Reference |
---|---|---|---|---|
W22×parviglumis | 分蘖数 | tb1 | Zm00001d033673 | [ |
W22×parviglumis | 颖壳 | tga1 | Zm00001d049822 | [ |
W22×parviglumis | 繁殖率(雌穗数目) | gt1 | Zm00001d028129 | [ |
W22×parviglumis | 开花期 | zagl1 | Zm00001d017614 | [ |
W22×parviglumis | 开花期 | ZmCCT10 | Zm00001d024909 | [ |
W22×parviglumis | 营养生长转换 | gl15 | Zm00001d046621 | [ |
W22×parviglumis | 叶夹角 | UPA1, UPA2 | Zm00001d002562, Zm00001d033180 | [ |
B73×mexicana | 穗行数 | KRN2 | Zm00001d002641 | [ |
W22×parviglumis | 开花期 | ZCN8 | Zm00001d010752 | [ |
W22×parviglumis | 开花期 | ZmMADS69 | Zm00001d031625 | [ |
W22×parviglumis | 开花期 | ZmCCT9 | Zm00001d000176 | [ |
B73×parviglumis | 籽粒蛋白含量 | TPH9 | Zm00001d047736 | [ |
W22×parviglumis | 醇溶蛋白 | pbf1 | Zm00001d005100 | [ |
Mo17×mexicana | 籽粒类胡萝卜素含量 | DXS2 | Zm00001d019060 | [ |
W22×parviglumis | K+稳态 | ZmHKT2 | Zm00001d014680 | [ |
Mo17×mexicana | 广谱抗性 | ZmMM1 | Zm00001d018698 | [ |
[1] |
Iltis HH, Doebley JF. Taxonomy of Zea(gramineae). ii. subspecific categories in the Zea mays complex and a generic synopsis[J]. American J Botany, 1980, 67(6): 994-1004.
doi: 10.1002/ajb2.1980.67.issue-6 URL |
[2] |
Fukunaga K, Hill J, Vigouroux Y, et al. Genetic diversity and population structure of teosinte[J]. Genetics, 2005, 169(4): 2241-2254.
pmid: 15687282 |
[3] |
Wang P, Lu YL, Zheng MM, et al. RAPD and internal transcribed spacer sequence analyses reveal Zea nicaraguensis as a section Luxuriantes species close to Zea luxurians[J]. PLoS One, 2011, 6(4): e16728.
doi: 10.1371/journal.pone.0016728 URL |
[4] |
Iltis HH, Doebley JF, M RG, et al. Zea diploperennis(gramineae): a new teosinte from Mexico[J]. Science, 1979, 203(4376): 186-188.
pmid: 17834721 |
[5] |
Poggio L, Gonzalez G, Confalonieri V, et al. The genome organization and diversification of maize and its allied species revisited: evidences from classical and FISH-GISH cytogenetic analysis[J]. Cytogenet Genome Res, 2005, 109(1-3): 259-267.
pmid: 15753585 |
[6] |
Ellneskog-Staam P, Henry Loaisiga C, Merker A. Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species[J]. Hereditas, 2007, 144(3): 96-101.
pmid: 17663701 |
[7] |
Sánchez González JJ, Ruiz Corral JA, García GM, et al. Ecogeography of teosinte[J]. PLoS One, 2018, 13(2): e0192676.
doi: 10.1371/journal.pone.0192676 URL |
[8] |
Hufford MB, Bilinski P, Pyhäjärvi T, et al. Teosinte as a model system for population and ecological genomics[J]. Trends Genet, 2012, 28(12): 606-615.
doi: 10.1016/j.tig.2012.08.004 pmid: 23021022 |
[9] |
Mano Y, Nakazono M. Genetic regulation of root traits for soil flooding tolerance in genus Zea[J]. Breed Sci, 2021, 71(1): 30-39.
doi: 10.1270/jsbbs.20117 URL |
[10] |
Rich PJ, Ejeta G. Towards effective resistance to Striga in African maize[J]. Plant Signal Behav, 2008, 3(9): 618-621.
doi: 10.4161/psb.3.9.5750 URL |
[11] |
Beadle GW. Origin of corn: pollen evidence[J]. Science, 1981, 213(4510): 890-892.
pmid: 17775274 |
[12] |
Matsuoka Y, Vigouroux Y, Goodman MM, et al. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6080-6084.
doi: 10.1073/pnas.052125199 pmid: 11983901 |
[13] |
Piperno DR, Ranere AJ, Holst I, et al. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico[J]. Proc Natl Acad Sci USA, 2009, 106(13): 5019-5024.
doi: 10.1073/pnas.0812525106 URL |
[14] |
Swanson-Wagner R, Briskine R, Schaefer R, et al. Reshaping of the maize transcriptome by domestication[J]. Proc Natl Acad Sci USA, 2012, 109(29): 11878-11883.
doi: 10.1073/pnas.1201961109 pmid: 22753482 |
[15] |
Li K, Wen WW, Alseekh S, et al. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement[J]. Plant J, 2019, 99(2): 216-230.
doi: 10.1111/tpj.2019.99.issue-2 URL |
[16] |
Xu GH, Cao JJ, Wang XF, et al. Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte[J]. Plant Cell, 2019, 31(9): 1990-2009.
doi: 10.1105/tpc.19.00111 URL |
[17] |
Flint-Garcia SA, Bodnar AL, Scott MP. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte[J]. Theor Appl Genet, 2009, 119(6): 1129-1142.
doi: 10.1007/s00122-009-1115-1 pmid: 19701625 |
[18] |
Flint-Garcia SA. Genetics and consequences of crop domestication[J]. J Agric Food Chem, 2013, 61(35): 8267-8276.
doi: 10.1021/jf305511d URL |
[19] |
Iltis HH. From teosinte to maize: the catastrophic sexual transmutation[J]. Science, 1983, 222(4626): 886-894.
pmid: 17738466 |
[20] |
Galinat WC. The origin of maize[J]. Annu Rev Genet, 1971, 5: 447-478.
pmid: 16097663 |
[21] |
Mangelsdorf PC, Reeves RG. Hybridization of maize, tripsacum, and euchlaena[J]. J Hered, 1931, 22(11): 329-343.
doi: 10.1093/oxfordjournals.jhered.a103399 URL |
[22] | Mangelsdorf PC, Robert GR. The origin of Indian corn and its relatives[J]. Agric Exp Sta BuI, 574: 1-315. |
[23] | Mangelsdorf PC, Reeves RG. The origin of corn: I. pod corn, the ancestral form[J]. Bot Mus LeafI Harvard Univ, 1959, 18(7):329-356. |
[24] |
Mangelsdorf PC. Corn: its origin, evolution and improvement[J]. Science, 1974, 185(4152): 687-688.
doi: 10.1126/science.185.4152.687 URL |
[25] | Beadle GW. Studies ofEuchlaena and its hybrids with Zea[J]. ZVer-erbungslehre, 1932, 62(1): 291-304. |
[26] |
Beadle GW. The relation of crossing over to chromosome association in Zea-Euchlaena hybrids[J]. Genetics, 1932, 17(4): 481-501.
doi: 10.1093/genetics/17.4.481 pmid: 17246663 |
[27] |
Beadle GW. Teosinte and the origin of maize[J]. J Hered, 1939, 30(6): 245-247.
doi: 10.1093/oxfordjournals.jhered.a104728 URL |
[28] | Beadle GW. The mystery of maize[J]. Field Mus Nat History Bul, 1972, 43(10): 1-11. |
[29] |
Dennis ES, Peacock WJ. Knob heterochromatin homology in maize and its relatives[J]. J Mol Evol, 1984, 20(3-4): 341-350.
pmid: 6439888 |
[30] |
Benz BF. Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca[J]. Proc Natl Acad Sci USA, 2001, 98(4): 2104-2106.
pmid: 11172083 |
[31] |
Han YH, Li LJ, Song YC, et al. Physical mapping of the 5S and 45S rDNA in teosintes[J]. Hereditas, 2002, 137(1): 16-19.
pmid: 12564628 |
[32] | Emerson RA., Beadle GW. Studies of Euchlaena and its hybrids with Zea. II. Crossing-over between the chromosomes of Euchlaena and those of Zea. Zeitscher[J]. Abstam Vererbungs I, 1932, 62: 291-304. |
[33] |
Baltazar BM, de Jesús Sánchez-Gonzalez J, de la Cruz-Larios L, et al. Pollination between maize and teosinte: an important determinant of gene flow in Mexico[J]. Theor Appl Genet, 2005, 110(3): 519-526.
pmid: 15592808 |
[34] |
Ellstrand NC, Garner LC, Hegde S, et al. Spontaneous hybridization between maize and teosinte[J]. J Hered, 2007, 98(2): 183-187.
pmid: 17400586 |
[35] |
Kistler L, Maezumi SY, Gregorio de Souza J, et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America[J]. Science, 2018, 362(6420): 1309-1313.
doi: 10.1126/science.aav0207 pmid: 30545889 |
[36] |
van Heerwaarden J, Doebley J, Briggs WH, et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces[J]. Proc Natl Acad Sci USA, 2011, 108(3): 1088-1092.
doi: 10.1073/pnas.1013011108 pmid: 21189301 |
[37] |
Hufford MB, Lubinksy P, Pyhäjärvi T, et al. The genomic signature of crop-wild introgression in maize[J]. PLoS Genet, 2013, 9(5): e1003477.
doi: 10.1371/journal.pgen.1003477 URL |
[38] |
Gonzalez-Segovia E, Pérez-Limon S, Cíntora-Martínez GC, et al. Characterization of introgression from the teosinte Zea mays ssp. mexicana to Mexican highland maize[J]. PeerJ, 2019, 7: e6815.
doi: 10.7717/peerj.6815 URL |
[39] |
Calfee E, Gates D, Lorant A, et al. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline[J]. PLoS Genet, 2021, 17(10): e1009810.
doi: 10.1371/journal.pgen.1009810 URL |
[40] |
Yang N, Wang YB, Liu XG, et al. Two teosintes made modern maize[J]. Science, 2023, 382(6674): eadg8940.
doi: 10.1126/science.adg8940 URL |
[41] |
Doebley JF, Goodman MM, Stuber CW. Isoenzymatic variation in Zea(gramineae)[J]. Syst Bot, 1984, 9(2): 203-218.
doi: 10.2307/2418824 URL |
[42] |
Doebley J, Goodman MM, Stuber CW. Patterns of isozyme variation between maize and Mexican annual teosinte[J]. Econ Bot, 1987, 41(2): 234-246.
doi: 10.1007/BF02858971 URL |
[43] |
Doebley J, Renfroe W, Blanton A. Restriction site variation in the Zea chloroplast genome[J]. Genetics, 1987, 117(1): 139-147.
doi: 10.1093/genetics/117.1.139 pmid: 17246395 |
[44] |
Chen L, Luo JY, Jin ML, et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea[J]. Nat Genet, 2022, 54(11): 1736-1745.
doi: 10.1038/s41588-022-01184-y pmid: 36266506 |
[45] | Galinat WC. The origin of maize as shown by key morphological traits of its ancestor, teosinte[J]. Maydica, 1983, 28: 121-138. |
[46] |
Doebley J. The genetics of maize evolution[J]. Annu Rev Genet, 2004, 38: 37-59.
pmid: 15568971 |
[47] |
Liu J, Fernie AR, Yan JB. The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement[J]. Plant Commun, 2019, 1(1): 100010.
doi: 10.1016/j.xplc.2019.100010 URL |
[48] |
Burton AL, Brown KM, Lynch JP. Phenotypic diversity of root anatomical and architectural traits in Zea species[J]. Crop Sci, 2013, 53(3): 1042-1055.
doi: 10.2135/cropsci2012.07.0440 URL |
[49] |
Perkins AC, Lynch JP. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings[J]. Ann Bot, 2021, 128(4): 453-468.
doi: 10.1093/aob/mcab074 URL |
[50] |
Brisson VL, Schmidt JE, Northen TR, et al. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil[J]. Sci Rep, 2019, 9(1): 15611.
doi: 10.1038/s41598-019-52148-y pmid: 31666614 |
[51] | Munkacsi AB, Stoxen S, May G. Ustilago maydis populations tracked maize through domestication and cultivation in the Americas[J]. Proc Biol Sci, 2008, 275(1638): 1037-1046. |
[52] |
Johnston-Monje D, Raizada MN. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology[J]. PLoS One, 2011, 6(6): e20396.
doi: 10.1371/journal.pone.0020396 URL |
[53] |
Rasmann S, Köllner TG, Degenhardt J, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434(7034): 732-737.
doi: 10.1038/nature03451 |
[54] |
Saxena RK, Edwards D, Varshney RK. Structural variations in plant genomes[J]. Brief Funct Genomics, 2014, 13(4): 296-307.
doi: 10.1093/bfgp/elu016 pmid: 24907366 |
[55] |
Ashe A, Colot V, Oldroyd BP. How does epigenetics influence the course of evolution?[J]. Philos Trans R Soc Lond B Biol Sci, 2021, 376(1826): 20200111.
doi: 10.1098/rstb.2020.0111 URL |
[56] |
Lamka GF, Harder AM, Sundaram M, et al. Epigenetics in ecology, evolution, and conservation[J]. Front Ecol Evol, 2022, 10: 871791.
doi: 10.3389/fevo.2022.871791 URL |
[57] |
Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant transposable elements[J]. Trends Plant Sci, 2010, 15(8): 471-478.
doi: 10.1016/j.tplants.2010.05.003 pmid: 20541961 |
[58] |
Lisch D. How important are transposons for plant evolution?[J]. Nat Rev Genet, 2013, 14(1): 49-61.
doi: 10.1038/nrg3374 pmid: 23247435 |
[59] |
Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
doi: 10.1126/science.1178534 pmid: 19965430 |
[60] |
Jiao YP, Peluso P, Shi JH, et al. Improved maize reference genome with single-molecule technologies[J]. Nature, 2017, 546(7659): 524-527.
doi: 10.1038/nature22971 URL |
[61] |
Díez CM, Gaut BS, Meca E, et al. Genome size variation in wild and cultivated maize along altitudinal gradients[J]. New Phytol, 2013, 199(1): 264-276.
doi: 10.1111/nph.12247 pmid: 23550586 |
[62] |
Bilinski P, Albert PS, Berg JJ, et al. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays[J]. PLoS Genet, 2018, 14(5): e1007162.
doi: 10.1371/journal.pgen.1007162 URL |
[63] |
Studer A, Zhao Q, Ross-Ibarra J, et al. Identification of a functional transposon insertion in the maize domestication gene Tb1[J]. Nat Genet, 2011, 43(11): 1160-1163.
doi: 10.1038/ng.942 pmid: 21946354 |
[64] | Huang C, Sun HY, Xu DY, et al. ZmCCT9 enhances maize adaptation to higher latitudes[J]. Proc Natl Acad Sci USA, 2018, 115(2): E334-E341. |
[65] |
Aledo R, Raz R, Monfort A, et al. Chromosome localization and characterization of a family of long interspersed repetitive DNA elements from the genus Zea[J]. Theor Appl Genet, 1995, 90(7-8): 1094-1100.
doi: 10.1007/BF00222927 pmid: 24173068 |
[66] |
Hartings H, Lazzaroni N, Rossi V, et al. Distribution of sequences related to the Bg transposable element of maize in Zea and related Genera[J]. Theor Appl Genet, 1996, 92(6): 696-701.
doi: 10.1007/BF00226091 pmid: 24166393 |
[67] |
Ramekar RV, Park KC, Sa KJ, et al. Mutator-based transposon display: a genetic tool for evolutionary and crop-improvement studies in maize[J]. Mol Biotechnol, 2018, 60(11): 799-809.
doi: 10.1007/s12033-018-0118-z pmid: 30178297 |
[68] |
Zhang XB, Qi YW. The landscape of Copia and Gypsy retrotransposon during maize domestication and improvement[J]. Front Plant Sci, 2019, 10: 1533.
doi: 10.3389/fpls.2019.01533 URL |
[69] |
Xu G, Lyu J, Li Q, et al. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement[J]. Nat Commun, 2020, 11(1): 5539.
doi: 10.1038/s41467-020-19333-4 pmid: 33139747 |
[70] | O'Mara JG. A cytogenetic study of Zea and Euchlaena[J]. Biology, 1942: 90227628. |
[71] |
Ting YC. Inversions and other characteristics of teosinte chromosomes[J]. CYTOLOGIA, 1958, 23(3): 239-250.
doi: 10.1508/cytologia.23.239 URL |
[72] | O'Mara JG. Chromosomes of maize-teosinte hybrids[D]. Cambridge: Bussey Inst Harvard Univ, 1964, 45. |
[73] |
Fang Z, Pyhäjärvi T, Weber AL, et al. Megabase-scale inversion polymorphism in the wild ancestor of maize[J]. Genetics, 2012, 191(3): 883-894.
doi: 10.1534/genetics.112.138578 pmid: 22542971 |
[74] |
Pyhäjärvi T, Hufford MB, Mezmouk S, et al. Complex patterns of local adaptation in teosinte[J]. Genome Biol Evol, 2013, 5(9): 1594-1609.
doi: 10.1093/gbe/evt109 pmid: 23902747 |
[75] |
Huang J, Gao YJ, Jia HT, et al. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication[J]. Mol Ecol Resour, 2016, 16(6): 1465-1477.
doi: 10.1111/1755-0998.12526 pmid: 26990495 |
[76] |
Han LQ, Mu ZN, Luo Z, et al. New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize[J]. J Integr Plant Biol, 2019, 61(4): 394-405.
doi: 10.1111/jipb.12708 |
[77] |
Sepúlveda-García EB, Pulido-Barajas JF, Huerta-Heredia AA, et al. Differential expression of maize and teosinte microRNAs under submergence, drought, and alternated stress[J]. Plants, 2020, 9(10): 1367.
doi: 10.3390/plants9101367 URL |
[78] |
Lemmon ZH, Bukowski R, Sun Q, et al. The role of cis regulatory evolution in maize domestication[J]. PLoS Genet, 2014, 10(11): e1004745.
doi: 10.1371/journal.pgen.1004745 URL |
[79] |
Lorant A, Pedersen S, Holst I, et al. The potential role of genetic assimilation during maize domestication[J]. PLoS One, 2017, 12(9): e0184202.
doi: 10.1371/journal.pone.0184202 URL |
[80] |
Beadle GW. The ancestry of corn[J]. Sci Am, 1980, 242(1): 112-119.
doi: 10.1038/scientificamerican0180-112 URL |
[81] |
Szabó VM, Burr B. Simple inheritance of key traits distinguishing maize and teosinte[J]. Mol Gen Genet, 1996, 252(1/2): 33-41.
doi: 10.1007/BF02173202 URL |
[82] |
Westerbergh A, Doebley J. Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci[J]. Evolution, 2002, 56(2): 273-283.
pmid: 11926495 |
[83] |
Doebley J, Stec A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations[J]. Genetics, 1993, 134(2): 559-570.
doi: 10.1093/genetics/134.2.559 pmid: 8325489 |
[84] |
Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosinte[J]. Genetics, 1991, 129(1): 285-295.
doi: 10.1093/genetics/129.1.285 pmid: 1682215 |
[85] |
Briggs WH, McMullen MD, Gaut BS, et al. Linkage mapping of domestication loci in a large maize teosinte backcross resource[J]. Genetics, 2007, 177(3): 1915-1928.
doi: 10.1534/genetics.107.076497 pmid: 17947434 |
[86] |
Lin ZL, Zhou LN, Zhong SY, et al. A gene regulatory network for tiller development mediated by Tin8 in maize[J]. J Exp Bot, 2022, 73(1): 110-122.
doi: 10.1093/jxb/erab399 URL |
[87] |
Wang QJ, Liao ZQ, Zhu CT, et al. Teosinte confers specific alleles and yield potential to maize improvement[J]. Theor Appl Genet, 2022, 135(10): 3545-3562.
doi: 10.1007/s00122-022-04199-5 pmid: 36121453 |
[88] |
Chen QY, Yang CJ, York AM, et al. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize[J]. Genetics, 2019, 213(3): 1065-1078.
doi: 10.1534/genetics.119.302594 pmid: 31481533 |
[89] |
Zhang ZH, Zhang X, Lin ZL, et al. The genetic architecture of nodal root number in maize[J]. Plant J, 2018, 93(6): 1032-1044.
doi: 10.1111/tpj.2018.93.issue-6 URL |
[90] |
Huang C, Chen QY, Xu GH, et al. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem[J]. J Integr Plant Biol, 2016, 58(1): 81-90.
doi: 10.1111/jipb.12358 |
[91] |
Li D, Wang XF, Zhang XB, et al. The genetic architecture of leaf number and its genetic relationship to flowering time in maize[J]. New Phytol, 2016, 210(1): 256-268.
doi: 10.1111/nph.13765 pmid: 26593156 |
[92] |
Tang HJ, Zhang RY, Wang M, et al. QTL mapping for flowering time in a maize-teosinte population under well-watered and water-stressed conditions[J]. Mol Breed, 2023, 43(9): 67.
doi: 10.1007/s11032-023-01413-0 |
[93] |
Xu GH, Wang XF, Huang C, et al. Complex genetic architecture underlies maize tassel domestication[J]. New Phytol, 2017, 214(2): 852-864.
doi: 10.1111/nph.14400 pmid: 28067953 |
[94] |
Chen ZJ, Hu K, Yin Y, et al. Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F2 population[J]. Mol Breed, 2022, 42(2): 9.
doi: 10.1007/s11032-022-01276-x |
[95] |
Chen ZJ, Tang DG, Hu K, et al. Combining QTL-seq and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the advanced populations of two-ranked maize × teosinte[J]. BMC Plant Biol, 2021, 21(1): 572.
doi: 10.1186/s12870-021-03353-3 |
[96] |
Zhang XL, Lu M, Xia AA, et al. Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population[J]. BMC Genomics, 2021, 22(1): 386.
doi: 10.1186/s12864-021-07723-x pmid: 34034669 |
[97] |
Lauter N, Gustus C, Westerbergh A, et al. The inheritance and evolution of leaf pigmentation and pubescence in teosinte[J]. Genetics, 2004, 167(4): 1949-1959.
doi: 10.1534/genetics.104.026997 pmid: 15342532 |
[98] |
Karn A, Gillman JD, Flint-Garcia SA. Genetic analysis of teosinte alleles for kernel composition traits in maize[J]. G3, 2017, 7(4): 1157-1164.
doi: 10.1534/g3.117.039529 URL |
[99] |
Liu ZB, Garcia A, McMullen MD, et al. Genetic analysis of kernel traits in maize-teosinte introgression populations[J]. G3, 2016, 6(8): 2523-2530.
doi: 10.1534/g3.116.030155 URL |
[100] | Liu ZB, Cook J, Melia-Hancock S, et al. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations[J]. Plant Genome, 2016, 9(1):1-11. |
[101] |
Wang KL, Zhang Z, Sha XQ, et al. Identification of a new QTL underlying seminal root number in a maize-teosinte population[J]. Front Plant Sci, 2023, 14: 1132017.
doi: 10.3389/fpls.2023.1132017 URL |
[102] |
Chen Z, Sun JL, Li DD, et al. Plasticity of root anatomy during domestication of a maize-teosinte derived population[J]. J Exp Bot, 2022, 73(1): 139-153.
doi: 10.1093/jxb/erab406 URL |
[103] |
Watanabe K, Takahashi H, Sato S, et al. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3[J]. Plant Cell Environ, 2017, 40(2): 304-316.
doi: 10.1111/pce.v40.2 URL |
[104] |
Mano Y, Omori F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte(Zea nicaraguensis)in maize(Zea mays subsp. mays)[J]. Ann Bot, 2013, 112(6): 1125-1139.
doi: 10.1093/aob/mct160 URL |
[105] |
Gong FP, Takahashi H, Omori F, et al. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency[J]. J Exp Bot, 2019, 70(21): 6475-6487.
doi: 10.1093/jxb/erz403 URL |
[106] |
Ma AJ, Qiu YJ, Raihan T, et al. The genetics and genome-wide screening of regrowth loci, a key component of perennialism in Zea diploperennis[J]. G3, 2019, 9(5): 1393-1403.
doi: 10.1534/g3.118.200977 URL |
[107] |
Leiboff S, DeAllie CK, Scanlon MJ. Modeling the morphometric evolution of the maize shoot apical meristem[J]. Front Plant Sci, 2016, 7: 1651.
pmid: 27867389 |
[108] |
Feng XJ, Xiong H, Zheng D, et al. Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression[J]. Front Plant Sci, 2022, 13: 942397.
doi: 10.3389/fpls.2022.942397 URL |
[109] |
Calderón CI, Yandell BS, Doebley JF. Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize[J]. PLoS One, 2016, 11(3): e0150276.
doi: 10.1371/journal.pone.0150276 URL |
[110] |
Zhang XY, Yang Q, Rucker E, et al. Fine mapping of a quantitative resistance gene for gray leaf spot of maize(Zea mays L.)derived from teosinte(Z. mays ssp. parviglumis)[J]. Theor Appl Genet, 2017, 130(6): 1285-1295.
doi: 10.1007/s00122-017-2888-2 |
[111] |
Vigouroux Y, Mitchell S, Matsuoka Y, et al. An analysis of genetic diversity across the maize genome using microsatellites[J]. Genetics, 2005, 169(3): 1617-1630.
doi: 10.1534/genetics.104.032086 pmid: 15654118 |
[112] |
Hufford MB, Xu X, van Heerwaarden J, et al. Comparative population genomics of maize domestication and improvement[J]. Nat Genet, 2012, 44(7): 808-811.
doi: 10.1038/ng.2309 pmid: 22660546 |
[113] |
Takuno S, Ralph P, Swarts K, et al. Independent molecular basis of convergent highland adaptation in maize[J]. Genetics, 2015, 200(4): 1297-1312.
doi: 10.1534/genetics.115.178327 pmid: 26078279 |
[114] |
Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance[J]. Genetics, 1995, 141(1): 333-346.
doi: 10.1093/genetics/141.1.333 pmid: 8536981 |
[115] |
Wang H, Nussbaum-Wagler T, Li BL, et al. The origin of the naked grains of maize[J]. Nature, 2005, 436(7051): 714-719.
doi: 10.1038/nature03863 |
[116] |
Wills DM, Whipple CJ, Takuno S, et al. From many, one: genetic control of prolificacy during maize domestication[J]. PLoS Genet, 2013, 9(6): e1003604.
doi: 10.1371/journal.pgen.1003604 URL |
[117] |
Wills DM, Fang Z, York AM, et al. Defining the role of the MADS-box gene, Zea agamous-like1, a target of selection during maize domestication[J]. J Hered, 2018, 109(3): 333-338.
doi: 10.1093/jhered/esx073 URL |
[118] | Hung HY, Shannon LM, Tian F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize[J]. Proc Natl Acad Sci USA, 2012, 109(28): E1913-E1921. |
[119] |
Xu DY, Wang XF, Huang C, et al. Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte[J]. Mol Plant, 2017, 10(12): 1579-1583.
doi: S1674-2052(17)30279-4 pmid: 28987887 |
[120] |
Tian JG, Wang CL, Xia JL, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science, 2019, 365(6454): 658-664.
doi: 10.1126/science.aax5482 pmid: 31416957 |
[121] |
Chen WK, Chen L, Zhang X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587): eabg7985.
doi: 10.1126/science.abg7985 URL |
[122] |
Guo L, Wang XH, Zhao M, et al. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation[J]. Curr Biol, 2018, 28(18): 3005-3015.e4.
doi: S0960-9822(18)30928-X pmid: 30220503 |
[123] |
Liang YM, Liu Q, Wang XF, et al. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation[J]. New Phytol, 2019, 221(4): 2335-2347.
doi: 10.1111/nph.15512 pmid: 30288760 |
[124] |
Huang YC, Wang HH, Zhu YD, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature, 2022, 612(7939): 292-300.
doi: 10.1038/s41586-022-05441-2 |
[125] |
Lang ZH, Wills DM, Lemmon ZH, et al. Defining the role of prolamin-box binding factor1 gene during maize domestication[J]. J Hered, 2014, 105(4): 576-582.
pmid: 24683184 |
[126] |
Fang H, Fu XY, Wang YB, et al. Genetic basis of kernel nutritional traits during maize domestication and improvement[J]. Plant J, 2020, 101(2): 278-292.
doi: 10.1111/tpj.14539 |
[127] |
Cao YB, Liang XY, Yin P, et al. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance[J]. New Phytol, 2019, 222(1): 301-317.
doi: 10.1111/nph.2019.222.issue-1 URL |
[128] |
Wang HZ, Hou JB, Ye P, et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize[J]. Mol Plant, 2021, 14(11): 1846-1863.
doi: 10.1016/j.molp.2021.07.008 pmid: 34271176 |
[129] |
Wallace JG, Larsson SJ, Buckler ES. Entering the second century of maize quantitative genetics[J]. Heredity, 2014, 112(1): 30-38.
doi: 10.1038/hdy.2013.6 pmid: 23462502 |
[130] |
Zhang H, Li YY, Zhu JK. Developing naturally stress-resistant crops for a sustainable agriculture[J]. Nat Plants, 2018, 4: 989-996.
doi: 10.1038/s41477-018-0309-4 pmid: 30478360 |
[131] |
Prioli LM, Silva WJ, Sondahl MR. Tissue culture and plant regeneration in diploid perennial teosinte[J]. J Plant Physiol, 1984, 117(2): 185-190.
doi: 10.1016/S0176-1617(84)80033-4 URL |
[132] |
Silva NC, Vidal R, Costa FM, et al. Presence of Zea luxurians(durieu and ascherson)bird in southern Brazil: implications for the conservation of wild relatives of maize[J]. PLoS One, 2015, 10(10): e0139034.
doi: 10.1371/journal.pone.0139034 URL |
[133] |
Sánchez G JJ, De La Cruz L LDL, Vidal M VA, et al. Three new teosintes(Zea Spp., Poaceae)from México[J]. Am J Bot, 2011, 98(9): 1537-1548.
doi: 10.3732/ajb.1100193 pmid: 21875968 |
[134] | Laurito G. A new species of Zea(Poaceae)from the Murciélago ISlands, Santa Elena Peninsula, Guanacaste, Costa Rica[J]. Biology, 2013, 80: 36-39. |
[135] |
Yang N, Xu XW, Wang RR, et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize[J]. Nat Commun, 2017, 8(1): 1874.
doi: 10.1038/s41467-017-02063-5 |
[136] | Zhu HC, Li C, Gao CX. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nat Rev Mol Cell Biol, 2020, 21(11): 661-677. |
[137] |
Zobrist JD, Martin-Ortigosa S, Lee K, et al. Transformation of teosinte(Zea mays ssp. parviglumis)via biolistic bombardment of seedling-derived callus tissues[J]. Front Plant Sci, 2021, 12: 773419.
doi: 10.3389/fpls.2021.773419 URL |
[1] | 刘艳, 孙静, 葛良鹏, 马继登, 张进威. 肠道微生物对宿主适应性免疫的影响[J]. 生物技术通报, 2024, 40(1): 113-126. |
[2] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[3] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[4] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[5] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[6] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[7] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[8] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[9] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[10] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[11] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[12] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[13] | 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析[J]. 生物技术通报, 2023, 39(1): 31-39. |
[14] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[15] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||