生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 113-126.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0497
刘艳1,2(), 孙静1,3, 葛良鹏1,3, 马继登1,2, 张进威1,3()
收稿日期:
2023-05-23
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
张进威,男,博士,助理研究员,研究方向:实验猪资源开发与利用;E-mail: jinweizhang50@163.com作者简介:
刘艳,女,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail: 2021202016@stu.sicau.edu.cn
基金资助:
LIU Yan1,2(), SUN Jing1,3, GE Liang-peng1,3, MA Ji-deng1,2, ZHANG Jin-wei1,3()
Received:
2023-05-23
Published:
2024-01-26
Online:
2024-02-06
摘要:
肠道微生物与宿主共同进化,形成了不可分割的宿主-微生物共生关系。这些共生微生物通过参与适应性免疫的发育和维持,在机体免疫系统中发挥了重要作用。适应性免疫系统通过B细胞介导的体液免疫和T细胞介导的细胞免疫维持机体稳态。肠道微生物可以直接调节B、T细胞的分化和活化,保护机体免遭病原体感染。本文综述肠道微生物对宿主早期免疫系统发育、细胞免疫和体液免疫的调控作用,以期为研究“微生物-宿主互作”对宿主适应性免疫的调控作用提供理论参考。
刘艳, 孙静, 葛良鹏, 马继登, 张进威. 肠道微生物对宿主适应性免疫的影响[J]. 生物技术通报, 2024, 40(1): 113-126.
LIU Yan, SUN Jing, GE Liang-peng, MA Ji-deng, ZHANG Jin-wei. Effects of Intestinal Microbiota on Host Adaptive Immunity[J]. Biotechnology Bulletin, 2024, 40(1): 113-126.
肠道微生物 Intestinal microbiota | 实验对象 Subject | 影响方式 Effects |
---|---|---|
双歧杆菌(Bifidobacteria)TMC3115 | 小鼠 | 促进新生小鼠肠道上皮的发育,可改善抗生素损伤的脾脏指数[ |
短乳杆菌(Lactobacillus brevis strain)1E1 | 仔猪 | 回肠隐窝深度较大,在空肠表达CD2、CD4和MHC-II的白细胞数量较低,影响肠道结构和免疫系统发育[ |
副干酪乳杆菌(Lactobacillus paracasei, Lp)DN-114001 | 小鼠 | 影响后代微生物菌群的发育,调节参与先天性和获得性免疫的两个重要免疫细胞群(巨噬细胞和树突状细胞)[ |
鼠李糖乳杆菌(Lactobacillus rhamnosus) | 小鼠 | 促进肠功能成熟,包括肠上皮细胞增殖、分化以及早期IgA生成[ |
鼠李糖乳杆菌(Lactobacillus rhamnosus) | 仔猪 | 促进断奶仔猪肠道T淋巴细胞的增殖[ |
仔猪 | 促进仔猪固有的早期B谱系发育和IgA产生[ | |
罗伊氏乳杆菌(Lactobacillus reuteri)D8 | 小鼠 | 保护肠道屏障并激活肠上皮细胞增殖,促进肠道类器官的生长发育,恢复肿瘤坏死因子-α(TNF-α)引起的肠上皮结构损伤[ |
罗伊氏乳杆菌(Lactobacillus reuteri)D3 | 仔猪 | 促进新生仔猪肠黏膜免疫系统的发育,维持肠道黏膜屏障[ |
表1 肠道微生物对宿主早期免疫发育的影响
Table 1 Effects of intestinal microbiota on host early immune development
肠道微生物 Intestinal microbiota | 实验对象 Subject | 影响方式 Effects |
---|---|---|
双歧杆菌(Bifidobacteria)TMC3115 | 小鼠 | 促进新生小鼠肠道上皮的发育,可改善抗生素损伤的脾脏指数[ |
短乳杆菌(Lactobacillus brevis strain)1E1 | 仔猪 | 回肠隐窝深度较大,在空肠表达CD2、CD4和MHC-II的白细胞数量较低,影响肠道结构和免疫系统发育[ |
副干酪乳杆菌(Lactobacillus paracasei, Lp)DN-114001 | 小鼠 | 影响后代微生物菌群的发育,调节参与先天性和获得性免疫的两个重要免疫细胞群(巨噬细胞和树突状细胞)[ |
鼠李糖乳杆菌(Lactobacillus rhamnosus) | 小鼠 | 促进肠功能成熟,包括肠上皮细胞增殖、分化以及早期IgA生成[ |
鼠李糖乳杆菌(Lactobacillus rhamnosus) | 仔猪 | 促进断奶仔猪肠道T淋巴细胞的增殖[ |
仔猪 | 促进仔猪固有的早期B谱系发育和IgA产生[ | |
罗伊氏乳杆菌(Lactobacillus reuteri)D8 | 小鼠 | 保护肠道屏障并激活肠上皮细胞增殖,促进肠道类器官的生长发育,恢复肿瘤坏死因子-α(TNF-α)引起的肠上皮结构损伤[ |
罗伊氏乳杆菌(Lactobacillus reuteri)D3 | 仔猪 | 促进新生仔猪肠黏膜免疫系统的发育,维持肠道黏膜屏障[ |
[1] |
Ganal-Vonarburg SC, Hornef MW, MacPherson AJ. Microbial-host molecular exchange and its functional consequences in early mammalian life[J]. Science, 2020, 368(6491): 604-607.
doi: 10.1126/science.aba0478 pmid: 32381716 |
[2] |
Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals[J]. Nat Immunol, 2013, 14(7): 646-653.
doi: 10.1038/ni.2604 pmid: 23778791 |
[3] |
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota[J]. Immunity, 2017, 46(4): 562-576.
doi: S1074-7613(17)30141-3 pmid: 28423337 |
[4] |
Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer[J]. Genome Med, 2021, 13(1): 107.
doi: 10.1186/s13073-021-00923-w pmid: 34162429 |
[5] |
McCoy KD, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity[J]. Immunol Rev, 2017, 279(1): 63-69.
doi: 10.1111/imr.12575 pmid: 28856735 |
[6] |
Geuking MB, Burkhard R. Microbial modulation of intestinal T helper cell responses and implications for disease and therapy[J]. Mucosal Immunol, 2020, 13(6): 855-866.
doi: 10.1038/s41385-020-00335-w URL |
[7] |
Kim M, Kim CH. Regulation of humoral immunity by gut microbial products[J]. Gut Microbes, 2017, 8(4): 392-399.
doi: 10.1080/19490976.2017.1299311 pmid: 28332901 |
[8] |
Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more[J]. Clin J Am Soc Nephrol, 2016, 11(1): 137-154.
doi: 10.2215/CJN.09430915 URL |
[9] | Rosenberg E, Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept[J]. mBio, 2016, 7(2): e01395. |
[10] |
Erttmann SF, Swacha P, Aung KM, et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis[J]. Immunity, 2022, 55(5): 847-861.e10.
doi: 10.1016/j.immuni.2022.04.006 pmid: 35545033 |
[11] |
Blander JM, Longman RS, Iliev ID, et al. Regulation of inflammation by microbiota interactions with the host[J]. Nat Immunol, 2017, 18(8): 851-860.
doi: 10.1038/ni.3780 pmid: 28722709 |
[12] |
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease[J]. Nat Neurosci, 2017, 20(2): 145-155.
doi: 10.1038/nn.4476 pmid: 28092661 |
[13] |
Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
doi: 10.1038/nature08821 |
[14] |
Eom JA, Kwon GH, Kim NY, et al. Diet-regulating microbiota and host immune system in liver disease[J]. Int J Mol Sci, 2021, 22(12): 6326.
doi: 10.3390/ijms22126326 URL |
[15] |
Cui X, Ye L, Li J, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients[J]. Sci Rep, 2018, 8(1): 635.
doi: 10.1038/s41598-017-18756-2 pmid: 29330424 |
[16] |
Kundu P, Blacher E, Elinav E, et al. Our gut microbiome: the evolving inner self[J]. Cell, 2017, 171(7): 1481-1493.
doi: S0092-8674(17)31371-5 pmid: 29245010 |
[17] |
Canfora EE, Meex RCR, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nat Rev Endocrinol, 2019, 15(5): 261-273.
doi: 10.1038/s41574-019-0156-z pmid: 30670819 |
[18] |
Thursby E, Juge N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474(11): 1823-1836.
doi: 10.1042/BCJ20160510 pmid: 28512250 |
[19] |
Qi RL, Wang J, Sun J, et al. The effects of gut microbiota colonizing on the porcine hypothalamus revealed by whole transcriptome analysis[J]. Front Microbiol, 2022, 13: 970470.
doi: 10.3389/fmicb.2022.970470 URL |
[20] |
Liu BN, Yu DM, Sun J, et al. Characterizing the influence of gut microbiota on host tryptophan metabolism with germ-free pigs[J]. Anim Nutr, 2022, 11: 190-200.
doi: 10.1016/j.aninu.2022.07.005 pmid: 36263410 |
[21] |
de Wouters d'Oplinter A, Rastelli M, Van Hul M, et al. Gut microbes participate in food preference alterations during obesity[J]. Gut Microbes, 2021, 13(1): 1959242.
doi: 10.1080/19490976.2021.1959242 URL |
[22] |
Li LZ, Fang ZF, Liu XY, et al. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes[J]. PLoS One, 2020, 15(4): e0231865.
doi: 10.1371/journal.pone.0231865 URL |
[23] |
Čipčić Paljetak H, Barešić A, Panek M, et al. Gut microbiota in mucosa and feces of newly diagnosed, treatment-naïve adult inflammatory bowel disease and irritable bowel syndrome patients[J]. Gut Microbes, 2022, 14(1): 2083419.
doi: 10.1080/19490976.2022.2083419 URL |
[24] | Wang X, Liu HL, Li YF, et al. Altered gut bacterial and metabolic signatures and their interaction in gestational diabetes mellitus[J]. Gut Microbes, 2020, 12(1): 1-13. |
[25] |
Kennedy KM, Gerlach MJ, Adam T, et al. Fetal meconium does not have a detectable microbiota before birth[J]. Nat Microbiol, 2021, 6(7): 865-873.
doi: 10.1038/s41564-021-00904-0 pmid: 33972766 |
[26] |
Kennedy KM, de Goffau MC, Perez-Muñoz ME, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies[J]. Nature, 2023, 613(7945): 639-649.
doi: 10.1038/s41586-022-05546-8 |
[27] |
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci USA, 2010, 107(26): 11971-11975.
doi: 10.1073/pnas.1002601107 pmid: 20566857 |
[28] | 吴元霞, 孙静, 葛良鹏, 等. SIgA与哺乳动物肠道菌群互作的研究进展[J]. 生命科学, 2023, 35(6): 733-742. |
Wu YX, Sun J, Ge LP, et al. Progress in the interaction between SIgA and mammalian gut flora[J]. Chin Bull Life Sci, 2023, 35(6): 733-742. | |
[29] |
Zhang JW, Wu XQ, Ma JD, et al. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells[J]. Front Immunol, 2022, 13: 967576.
doi: 10.3389/fimmu.2022.967576 URL |
[30] |
Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life[J]. Mucosal Immunol, 2020, 13(2): 183-189.
doi: 10.1038/s41385-020-0257-y pmid: 31988466 |
[31] |
Hornef MW, Torow N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ - timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth[J]. Immunology, 2020, 159(1): 15-25.
doi: 10.1111/imm.v159.1 URL |
[32] |
de Goffau MC, Lager S, Sovio U, et al. Human placenta has no microbiome but can contain potential pathogens[J]. Nature, 2019, 572(7769): 329-334.
doi: 10.1038/s41586-019-1451-5 |
[33] |
Hornef M, Pabst O, Annesi-Maesano I, et al. Allergic diseases in infancy II-oral tolerance and its failure[J]. World Allergy Organ J, 2021, 14(11): 100586.
doi: 10.1016/j.waojou.2021.100586 URL |
[34] |
Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity[J]. Curr Opin Microbiol, 2020, 56: 30-37.
doi: S1369-5274(20)30070-9 pmid: 32634598 |
[35] |
Kalbermatter C, Fernandez Trigo N, Christensen S, et al. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn[J]. Front Immunol, 2021, 12: 683022.
doi: 10.3389/fimmu.2021.683022 URL |
[36] |
Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity[J]. Front Microbiol, 2017, 8: 1162.
doi: 10.3389/fmicb.2017.01162 pmid: 28690602 |
[37] |
Song SJ, Lauber C, Costello EK, et al. Cohabiting family members share microbiota with one another and with their dogs[J]. eLife, 2013, 2: e00458.
doi: 10.7554/eLife.00458 URL |
[38] |
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer[J]. Nat Med, 2016, 22(3): 250-253.
doi: 10.1038/nm.4039 pmid: 26828196 |
[39] |
Laursen MF, Sakanaka M, von Burg N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut[J]. Nat Microbiol, 2021, 6(11): 1367-1382.
doi: 10.1038/s41564-021-00970-4 pmid: 34675385 |
[40] |
Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life[J]. Cell, 2021, 184(15): 3884-3898.e11.
doi: 10.1016/j.cell.2021.05.030 pmid: 34143954 |
[41] |
Donaldson GP, Ladinsky MS, Yu KB, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization[J]. Science, 2018, 360(6390): 795-800.
doi: 10.1126/science.aaq0926 pmid: 29724905 |
[42] |
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544.
doi: 10.1126/science.aad9378 pmid: 27126036 |
[43] |
Al Nabhani Z, Dulauroy S, Marques R, et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult[J]. Immunity, 2019, 50(5): 1276-1288.e5.
doi: S1074-7613(19)30081-0 pmid: 30902637 |
[44] |
Knoop KA, Gustafsson JK, McDonald KG, et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria[J]. Sci Immunol, 2017, 2(18): eaao1314.
doi: 10.1126/sciimmunol.aao1314 URL |
[45] |
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, et al. Role of the microbiome in human development[J]. Gut, 2019, 68(6): 1108-1114.
doi: 10.1136/gutjnl-2018-317503 pmid: 30670574 |
[46] |
Rackaityte E, Halkias J, Fukui EM, et al. Viable bacterial colonization is highly limited in the human intestine in utero[J]. Nat Med, 2020, 26(4): 599-607.
doi: 10.1038/s41591-020-0761-3 pmid: 32094926 |
[47] |
Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites[J]. Nat Commun, 2015, 6: 7320.
doi: 10.1038/ncomms8320 pmid: 26102221 |
[48] |
Nakajima A, Kaga N, Nakanishi Y, et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice[J]. J Immunol, 2017, 199(10): 3516-3524.
doi: 10.4049/jimmunol.1700248 pmid: 29021375 |
[49] |
Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development[J]. Science, 2016, 351(6279): 1296-1302.
doi: 10.1126/science.aad2571 pmid: 26989247 |
[50] |
Zheng DP, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Res, 2020, 30(6): 492-506.
doi: 10.1038/s41422-020-0332-7 pmid: 32433595 |
[51] |
Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241.
doi: 10.1038/nature11551 |
[52] |
Tibbs TN, Lopez LR, Arthur JC. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging[J]. Microb Cell, 2019, 6(8): 324-334.
doi: 10.15698/mic2019.08.685 pmid: 31403049 |
[53] |
Yamada T, Hino S, Iijima H, et al. Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis[J]. eBioMedicine, 2019, 48: 513-525.
doi: S2352-3964(19)30606-1 pmid: 31521614 |
[54] |
Manca C, Boubertakh B, Leblanc N, et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling[J]. J Lipid Res, 2020, 61(1): 70-85.
doi: 10.1194/jlr.RA119000424 pmid: 31690638 |
[55] |
Lubin JB, Green J, Maddux S, et al. Arresting microbiome development limits immune system maturation and resistance to infection in mice[J]. Cell Host Microbe, 2023, 31(4): 554-570.e7.
doi: 10.1016/j.chom.2023.03.006 URL |
[56] |
Gou HZ, Zhang YL, Ren LF, et al. How do intestinal probiotics restore the intestinal barrier?[J]. Front Microbiol, 2022, 13: 929346.
doi: 10.3389/fmicb.2022.929346 URL |
[57] |
Gerritsen J, Smidt H, Rijkers GT, et al. Intestinal microbiota in human health and disease: the impact of probiotics[J]. Genes Nutr, 2011, 6(3): 209-240.
doi: 10.1007/s12263-011-0229-7 pmid: 21617937 |
[58] | 姚芳芳, 郑鹏远, 黄煌, 等. 副干酪乳杆菌N1115联合低聚果糖对高脂饮食诱导小鼠非酒精性脂肪性肝病的影响[J]. 中华肝脏病杂志, 2017, 25(12): 927-933. |
Yao FF, Zheng PY, Huang H, et al. Effects of Lactobacillus paracasei N1115 combined with fructooligosaccharides on non-alcoholic fatty liver disease induced by high-fat diet in mice[J]. Chin J Hepatol, 2017, 25(12): 927-933.
doi: 10.3760/cma.j.issn.1007-3418.2017.12.008 pmid: 29325294 |
|
[59] |
Yan F, Liu L, Cao H, et al. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood[J]. Mucosal Immunol, 2017, 10(1): 117-127.
doi: 10.1038/mi.2016.43 pmid: 27095077 |
[60] | 黄京山, 王妍瑾, 杨桂连, 等. 益生菌的多重抗病毒作用及其机制[J]. 微生物学报, 2022, 62(9): 3345-3357. |
Huang JS, Wang YJ, Yang GL, et al. Multifaceted antiviral effects and the underlying mechanisms of probiotics[J]. Acta Microbiol Sin, 2022, 62(9): 3345-3357. | |
[61] |
Cheng RY, Guo JW, Pu FF, et al. Loading ceftriaxone, vancomycin, and Bifidobacteria bifidum TMC3115 to neonatal mice could differently and consequently affect intestinal microbiota and immunity in adulthood[J]. Sci Rep, 2019, 9(1): 3254.
doi: 10.1038/s41598-018-35737-1 pmid: 30824845 |
[62] |
Gebert S, Davis E, Rehberger T, et al. Lactobacillus brevis strain 1E1 administered to piglets through milk supplementation prior to weaning maintains intestinal integrity after the weaning event[J]. Benef Microbes, 2011, 2(1): 35-45.
doi: 10.3920/BM2010.0043 pmid: 21831788 |
[63] |
Miao ZH, Zheng HY, Liu WH, et al. Lacticaseibacillus paracasei K56 attenuates high-fat diet-induced obesity by modulating the gut microbiota in mice[J]. Probiotics Antimicrob Proteins, 2023, 15(4): 844-855.
doi: 10.1007/s12602-022-09911-x |
[64] |
Mikulic J, Longet S, Favre L, et al. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β[J]. Cell Mol Immunol, 2017, 14(6): 546-556.
doi: 10.1038/cmi.2015.110 pmid: 26972771 |
[65] |
Shonyela SM, Feng B, Yang WT, et al. The regulatory effect of Lactobacillus rhamnosus GG on T lymphocyte and the development of intestinal villi in piglets of different periods[J]. AMB Express, 2020, 10(1): 76.
doi: 10.1186/s13568-020-00980-1 pmid: 32303860 |
[66] |
Jin YB, Cao X, Shi CW, et al. Lactobacillus rhamnosus GG promotes early B lineage development and IgA production in the Lamina propria in piglets[J]. J Immunol, 2021, 207(8): 2179-2191.
doi: 10.4049/jimmunol.2100102 URL |
[67] |
Hou QH, Ye LL, Liu HF, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Differ, 2018, 25(9): 1657-1670.
doi: 10.1038/s41418-018-0070-2 |
[68] |
Wang MJ, Wu HQ, Lu LH, et al. Lactobacillus reuteri promotes intestinal development and regulates mucosal immune function in newborn piglets[J]. Front Vet Sci, 2020, 7: 42.
doi: 10.3389/fvets.2020.00042 URL |
[69] |
Ennamorati M, Vasudevan C, Clerkin K, et al. Intestinal microbes influence development of thymic lymphocytes in early life[J]. Proc Natl Acad Sci USA, 2020, 117(5): 2570-2578.
doi: 10.1073/pnas.1915047117 pmid: 31964813 |
[70] |
Günther C, Josenhans C, Wehkamp J. Crosstalk between microbiota, pathogens and the innate immune responses[J]. Int J Med Microbiol, 2016, 306(5): 257-265.
doi: S1438-4221(16)30018-2 pmid: 26996809 |
[71] |
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease[J]. Nature, 2016, 535(7610): 75-84.
doi: 10.1038/nature18848 |
[72] |
Medzhitov R. Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449(7164): 819-826.
doi: 10.1038/nature06246 |
[73] | Wang L, Zhu LM, Qin S. Gut microbiota modulation on intestinal mucosal adaptive immunity[J]. J Immunol Res, 2019, 2019: 4735040. |
[74] |
Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens[J]. Immunology, 2018, 154(1): 28-37.
doi: 10.1111/imm.12896 pmid: 29338074 |
[75] |
Lui JB, Devarajan P, Teplicki SA, et al. Cross-differentiation from the CD8 lineage to CD4 T cells in the gut-associated microenvironment with a nonessential role of microbiota[J]. Cell Rep, 2015, 10(4): 574-585.
doi: 10.1016/j.celrep.2014.12.053 pmid: 25640181 |
[76] |
Chiu CY, Chan YL, Tsai MH, et al. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies[J]. World Allergy Organ J, 2019, 12(3): 100021.
doi: 10.1016/j.waojou.2019.100021 URL |
[77] |
Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms[J]. Cell, 2017, 168(5): 928-943.e11.
doi: S0092-8674(17)30107-1 pmid: 28215708 |
[78] |
Collins J, Borojevic R, Verdu EF, et al. Intestinal microbiota influence the early postnatal development of the enteric nervous system[J]. Neurogastroenterol Motil, 2014, 26(1): 98-107.
doi: 10.1111/nmo.2013.26.issue-1 URL |
[79] |
Olivares-Villagómez D, Van Kaer L. Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier[J]. Trends Immunol, 2018, 39(4): 264-275.
doi: S1471-4906(17)30213-2 pmid: 29221933 |
[80] |
Kuhn KA, Schulz HM, Regner EH, et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity[J]. Mucosal Immunol, 2018, 11(2): 357-368.
doi: 10.1038/mi.2017.55 pmid: 28812548 |
[81] |
Edelblum KL, Singh G, Odenwald MA, et al. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice[J]. Gastroenterology, 2015, 148(7): 1417-1426.
doi: 10.1053/j.gastro.2015.02.053 pmid: 25747597 |
[82] |
Wang WJ, Sung N, Gilman-Sachs A, et al. T helper(Th)cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/tfh cells[J]. Front Immunol, 2020, 11: 2025.
doi: 10.3389/fimmu.2020.02025 URL |
[83] |
Kumar S, Jeong Y, Ashraf MU, et al. Dendritic cell-mediated Th2 immunity and immune disorders[J]. Int J Mol Sci, 2019, 20(9): 2159.
doi: 10.3390/ijms20092159 URL |
[84] |
Mickael ME, Bhaumik S, Basu R. Retinoid-related orphan receptor RORγt in CD4+ T-cell-mediated intestinal homeostasis and inflammation[J]. Am J Pathol, 2020, 190(10): 1984-1999.
doi: 10.1016/j.ajpath.2020.07.010 pmid: 32735890 |
[85] |
Mao QF, Shang-Guan ZF, Chen HL, et al. Immunoregulatory role of IL-2/STAT5/CD4+CD25+Foxp3 Treg pathway in the pathogenesis of chronic osteomyelitis[J]. Ann Transl Med, 2019, 7(16): 384.
doi: 10.21037/atm URL |
[86] |
Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome[J]. Nature, 2008, 452(7188): 773-776.
doi: 10.1038/nature06764 |
[87] |
Torchinsky MB, Garaude J, Martin AP, et al. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation[J]. Nature, 2009, 458(7234): 78-82.
doi: 10.1038/nature07781 |
[88] |
Zaph C, Du YR, Saenz SA, et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine[J]. J Exp Med, 2008, 205(10): 2191-2198.
doi: 10.1084/jem.20080720 URL |
[89] |
Sano T, Kageyama T, Fang V, et al. Redundant cytokine requirement for intestinal microbiota-induced Th17 cell differentiation in draining lymph nodes[J]. Cell Rep, 2021, 36(12): 109766.
doi: 10.1016/j.celrep.2021.109766 URL |
[90] |
Rodriguez-Marino N, Cervantes-Barragan L. Microbial Cgr2 will let your Th17 cells ROR(γT)[J]. Cell Host Microbe, 2022, 30(1): 10-12.
doi: 10.1016/j.chom.2021.12.014 pmid: 35026131 |
[91] |
Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice[J]. Immunity, 2019, 50(1): 212-224.e4.
doi: S1074-7613(18)30563-6 pmid: 30650377 |
[92] |
李梦颖, 周华, 丁玉春, 等. 肠道微生物对仔猪胆汁酸谱及胆汁酸代谢的影响[J]. 生物技术通报, 2020, 36(10): 49-61.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0269 |
Li MY, Zhou H, Ding YC, et al. Effects of gut microbiota on bile acid profile and bile acid metabolism in piglets[J]. Biotechnol Bull, 2020, 36(10): 49-61. | |
[93] |
Paik D, Yao LN, Zhang YC, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912.
doi: 10.1038/s41586-022-04480-z |
[94] |
Sun CY, Yang N, Zheng ZL, et al. T helper 17(Th17)cell responses to the gut microbiota in human diseases[J]. Biomed Pharmacother, 2023, 161: 114483.
doi: 10.1016/j.biopha.2023.114483 URL |
[95] |
Omenetti S, Bussi C, Metidji A, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells[J]. Immunity, 2019, 51(1): 77-89.e6.
doi: S1074-7613(19)30224-9 pmid: 31229354 |
[96] |
Jiang P, Zheng C, Xiang Y, et al. The involvement of TH17 cells in the pathogenesis of IBD[J]. Cytokine Growth Factor Rev, 2023, 69: 28-42.
doi: 10.1016/j.cytogfr.2022.07.005 URL |
[97] |
Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages[J]. Annu Rev Immunol, 2007, 25: 821-852.
pmid: 17201677 |
[98] |
Romagnani S. T-cell subsets(Th1 versus Th2)[J]. Ann Allergy Asthma Immunol, 2000, 85(1): 9-18; quiz 18, 21.
doi: 10.1016/S1081-1206(10)62426-X URL |
[99] |
Cao H, Diao J, Liu HS, et al. The pathogenicity and synergistic action of Th1 and Th17 cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2023, 29(5): 818-829.
doi: 10.1093/ibd/izac199 URL |
[100] |
Zhang QJ, Su XM, Zhang CZ, et al. Klebsiella pneumoniae induces inflammatory bowel disease through caspase-11-mediated IL18 in the gut epithelial cells[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(3): 613-632.
doi: 10.1016/j.jcmgh.2022.11.005 URL |
[101] |
Atarashi K, Suda W, Luo CW, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation[J]. Science, 2017, 358(6361): 359-365.
doi: 10.1126/science.aan4526 pmid: 29051379 |
[102] |
Shim JA, Ryu JH, Jo Y, et al. The role of gut microbiota in T cell immunity and immune mediated disorders[J]. Int J Biol Sci, 2023, 19(4): 1178-1191.
doi: 10.7150/ijbs.79430 pmid: 36923929 |
[103] |
Olson CA, Iñiguez AJ, Yang GE, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia[J]. Cell Host Microbe, 2021, 29(9): 1378-1392.e6.
doi: 10.1016/j.chom.2021.07.004 pmid: 34358434 |
[104] |
Cai GD, Xia SG, Zhong F, et al. Zearalenone and deoxynivalenol reduced Th1-mediated cellular immune response after Listeria monocytogenes infection by inhibiting CD4+ T cell activation and differentiation[J]. Environ Pollut, 2021, 284: 117514.
doi: 10.1016/j.envpol.2021.117514 URL |
[105] |
Li YN, Ye ZX, Zhu JG, et al. Effects of gut microbiota on host adaptive immunity under immune homeostasis and tumor pathology state[J]. Front Immunol, 2022, 13: 844335.
doi: 10.3389/fimmu.2022.844335 URL |
[106] |
Kim SE, Kim JH, Min BH, et al. Crude extracts of Caenorhabditis elegans suppress airway inflammation in a murine model of allergic asthma[J]. PLoS One, 2012, 7(4): e35447.
doi: 10.1371/journal.pone.0035447 URL |
[107] |
Merryman M, Crigler J, Seipelt-Thiemann R, et al. A mutation in C. neoformans mitochondrial NADH dehydrogenase results in increased virulence in mice[J]. Virulence, 2020, 11(1): 1366-1378.
doi: 10.1080/21505594.2020.1831332 pmid: 33103620 |
[108] | Hori S. FOXP3 as a master regulator of Treg cells[J]. Nat Rev Immunol, 2021, 21(10): 618-619. |
[109] |
Georgiev P, Charbonnier LM, Chatila TA. Regulatory T cells: the many faces of Foxp3[J]. J Clin Immunol, 2019, 39(7): 623-640.
doi: 10.1007/s10875-019-00684-7 pmid: 31478130 |
[110] |
Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance[J]. Annu Rev Immunol, 2012, 30: 733-758.
doi: 10.1146/annurev-immunol-020711-075043 pmid: 22224762 |
[111] |
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota[J]. Proc Natl Acad Sci USA, 2010, 107(27): 12204-12209.
doi: 10.1073/pnas.0909122107 pmid: 20566854 |
[112] |
Cong YZ, Feng T, Fujihashi K, et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota[J]. Proc Natl Acad Sci USA, 2009, 106(46): 19256-19261.
doi: 10.1073/pnas.0812681106 pmid: 19889972 |
[113] |
Tsuji M, Komatsu N, Kawamoto S, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches[J]. Science, 2009, 323(5920): 1488-1492.
doi: 10.1126/science.1169152 pmid: 19286559 |
[114] |
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341.
doi: 10.1126/science.1198469 pmid: 21205640 |
[115] |
Zhang Y, Sun DH, Zhao XB, et al. Bacteroides fragilis prevents aging-related atrial fibrillation in rats via regulatory T cells-mediated regulation of inflammation[J]. Pharmacol Res, 2022, 177: 106141.
doi: 10.1016/j.phrs.2022.106141 URL |
[116] |
Lee SH, Cho SY, Yoon Y, et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice[J]. Nat Microbiol, 2021, 6(3): 277-288.
doi: 10.1038/s41564-020-00831-6 |
[117] |
Fan ZX, Ross RP, Stanton C, et al. Lactobacillus casei CCFM1074 alleviates collagen-induced arthritis in rats via balancing treg/Th17 and modulating the metabolites and gut microbiota[J]. Front Immunol, 2021, 12: 680073.
doi: 10.3389/fimmu.2021.680073 URL |
[118] |
Bernard-Raichon L, Colom A, Monard SC, et al. A pulmonary Lactobacillus murinus strain induces Th17 and RORγt+ regulatory T cells and reduces lung inflammation in tuberculosis[J]. J Immunol, 2021, 207(7): 1857-1870.
doi: 10.4049/jimmunol.2001044 pmid: 34479945 |
[119] | Zhang X, Borbet TC, Fallegger A et al. An antibiotic-impacted microbiota compromises the development of colonic regulatory T cells and predisposes to dysregulated immune responses[J]. mBio, 2021, 12(1): e03335-20. |
[120] |
Yang QL, Wang YX, Jia AN, et al. The crosstalk between gut bacteria and host immunity in intestinal inflammation[J]. J Cell Physiol, 2021, 236(4): 2239-2254.
doi: 10.1002/jcp.v236.4 URL |
[121] |
Perruzza L, Gargari G, Proietti M, et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP[J]. Cell Rep, 2017, 18(11): 2566-2575.
doi: S2211-1247(17)30276-0 pmid: 28297661 |
[122] |
Teng F, Klinger CN, Felix KM, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of peyer's patch T follicular helper cells[J]. Immunity, 2016, 44(4): 875-888.
doi: 10.1016/j.immuni.2016.03.013 pmid: 27096318 |
[123] |
Zhang X, Chen BD, Zhao LD, et al. The gut microbiota: emerging evidence in autoimmune diseases[J]. Trends Mol Med, 2020, 26(9): 862-873.
doi: S1471-4914(20)30103-9 pmid: 32402849 |
[124] |
Hou L, Sasakj H, Stashenko P. B-Cell deficiency predisposes mice to disseminating anaerobic infections: protection by passive antibody transfer[J]. Infect Immun, 2000, 68(10): 5645-5651.
doi: 10.1128/IAI.68.10.5645-5651.2000 pmid: 10992465 |
[125] | 沈阳, 孙静, 葛良鹏, 等. Peyer结介导的小肠黏膜免疫及其物种间差异的研究进展[J]. 中国免疫学杂志, 2022, 38(23): 2919-2926. |
Shen Y, Sun J, Ge LP, et al. Peyer's patch mediated small intestinal mucosal immunity and its differences among species[J]. Chin J Immunol, 2022, 38(23): 2919-2926. | |
[126] |
Rosser EC, Oleinika K, Tonon S, et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production[J]. Nat Med, 2014, 20(11): 1334-1339.
doi: 10.1038/nm.3680 pmid: 25326801 |
[127] |
Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms[J]. Immunol Res, 2014, 59(1-3): 12-22.
doi: 10.1007/s12026-014-8523-2 pmid: 24847763 |
[128] |
Wesemann DR, Portuguese AJ, Meyers RM, et al. Microbial colonization influences early B-lineage development in the gut Lamina propria[J]. Nature, 2013, 501(7465): 112-115.
doi: 10.1038/nature12496 |
[129] |
van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues[J]. Nat Rev Immunol, 2010, 10(9): 664-674.
doi: 10.1038/nri2832 pmid: 20706277 |
[130] | 崇洁, 马继登, 张进威, 等. SCFAs对肠道免疫调控的研究进展[J]. 生命科学, 2023, 35(5): 663-670. |
Chong J, Ma JD, Zhang JW, et al. Advances in the intestinal immune regulation by SCFAs[J]. Chin Bull Life Sci, 2023, 35(5): 663-670. | |
[131] |
Kim M, Qie YQ, Park J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20(2): 202-214.
doi: 10.1016/j.chom.2016.07.001 pmid: 27476413 |
[132] |
Kim SH, Jeung W, Choi ID, et al. Lactic acid bacteria improves peyer's patch cell-mediated immunoglobulin A and tight-junction expression in a destructed gut microbial environment[J]. J Microbiol Biotechnol, 2016, 26(6): 1035-1045.
doi: 10.4014/jmb.1512.12002 URL |
[133] |
Bridgman SL, Konya T, Azad MB, et al. Infant gut immunity: a preliminary study of IgA associations with breastfeeding[J]. J Dev Orig Health Dis, 2016, 7(1): 68-72.
doi: 10.1017/S2040174415007862 URL |
[134] | Hendrickx APA, Top J, Bayjanov JR, et al. Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of Enterococcus faecium from the intestinal epithelium[J]. mBio, 2015, 6(6): e01346-15. |
[135] |
Moor K, Diard M, Sellin ME, et al. High-avidity IgA protects the intestine by enchaining growing bacteria[J]. Nature, 2017, 544(7651): 498-502.
doi: 10.1038/nature22058 URL |
[136] |
Yu Q, Jia AN, Li Y, et al. Microbiota regulate the development and function of the immune cells[J]. Int Rev Immunol, 2018, 37(2): 79-89.
doi: 10.1080/08830185.2018.1429428 pmid: 29425062 |
[137] |
MacPherson AJ, Köller Y, McCoy KD. The bilateral responsiveness between intestinal microbes and IgA[J]. Trends Immunol, 2015, 36(8): 460-470.
doi: 10.1016/j.it.2015.06.006 pmid: 26169256 |
[138] |
Lindner C, Wahl B, Föhse L, et al. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine[J]. J Exp Med, 2012, 209(2): 365-377.
doi: 10.1084/jem.20111980 URL |
[139] |
Hapfelmeier S, Lawson MAE, Slack E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses[J]. Science, 2010, 328(5986): 1705-1709.
doi: 10.1126/science.1188454 pmid: 20576892 |
[140] |
Bunker JJ, Flynn TM, Koval JC, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A[J]. Immunity, 2015, 43(3): 541-553.
doi: 10.1016/j.immuni.2015.08.007 pmid: 26320660 |
[141] |
Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota[J]. Science, 2017, 358(6361): eaan6619.
doi: 10.1126/science.aan6619 URL |
[142] |
Reboldi A, Arnon TI, Rodda LB, et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches[J]. Science, 2016, 352(6287): aaf4822.
doi: 10.1126/science.aaf4822 URL |
[143] |
Boullier S, Tanguy M, Kadaoui KA, et al. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits[J]. J Immunol, 2009, 183(9): 5879-5885.
doi: 10.4049/jimmunol.0901838 URL |
[144] |
Koch MA, Reiner GL, Lugo KA, et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life[J]. Cell, 2016, 165(4): 827-841.
doi: 10.1016/j.cell.2016.04.055 pmid: 27153495 |
[145] |
Shibuya A, Honda SI. Molecular and functional characteristics of the Fcalpha/muR, a novel Fc receptor for IgM and IgA[J]. Springer Semin Immunopathol, 2006, 28(4): 377-382.
pmid: 17061088 |
[146] |
Magri G, Comerma L, Pybus M, et al. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals[J]. Immunity, 2017, 47(1): 118-134.e8.
doi: S1074-7613(17)30273-X pmid: 28709802 |
[147] |
Zeng MY, Cisalpino D, Varadarajan S, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens[J]. Immunity, 2016, 44(3): 647-658.
doi: S1074-7613(16)30021-8 pmid: 26944199 |
[148] |
Cahenzli J, Köller Y, Wyss M, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels[J]. Cell Host Microbe, 2013, 14(5): 559-570.
doi: 10.1016/j.chom.2013.10.004 pmid: 24237701 |
[149] |
Wyss M, Brown K, Thomson CA, et al. Using precisely defined in vivo microbiotas to understand microbial regulation of IgE[J]. Front Immunol, 2020, 10: 3107.
doi: 10.3389/fimmu.2019.03107 URL |
[150] | Choi JH, Wang KW, Zhang DW, et al. IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice[J]. Proc Natl Acad Sci USA, 2017, 114(7): E1196-E1204. |
[151] |
Gao J, Xu K, Liu HN, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism[J]. Front Cell Infect Microbiol, 2018, 8: 13.
doi: 10.3389/fcimb.2018.00013 URL |
[152] |
Shulzhenko N, Morgun A, Hsiao W, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut[J]. Nat Med, 2011, 17(12): 1585-1593.
doi: 10.1038/nm.2505 pmid: 22101768 |
[153] |
Schuhmann MK, Langhauser F, Kraft P, et al. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice[J]. J Neuroinflammation, 2017, 14(1): 112.
doi: 10.1186/s12974-017-0890-x URL |
[154] |
Kleinschnitz C, Schwab N, Kraft P, et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation[J]. Blood, 2010, 115(18): 3835-3842.
doi: 10.1182/blood-2009-10-249078 pmid: 20215643 |
[155] |
Zhou W, Liesz A, Bauer H, et al. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models[J]. Brain Pathol, 2013, 23(1): 34-44.
doi: 10.1111/bpa.2013.23.issue-1 URL |
[156] |
Gan Y, Liu Q, Wu W, et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction[J]. Proc Natl Acad Sci USA, 2014, 111(7): 2704-2709.
doi: 10.1073/pnas.1315943111 pmid: 24550298 |
[157] |
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine[J]. Nat Immunol, 2013, 14(7): 660-667.
doi: 10.1038/ni.2611 pmid: 23778793 |
[158] |
Moretti CH, Schiffer TA, Li XC, et al. Germ-free mice are not protected against diet-induced obesity and metabolic dysfunction[J]. Acta Physiol, 2021, 231(3): e13581.
doi: 10.1111/apha.2021.231.issue-3 URL |
[159] |
Huang JL, Zhang J, Wang XZ, et al. Effect of probiotics on respiratory tract allergic disease and gut microbiota[J]. Front Nutr, 2022, 9: 821900.
doi: 10.3389/fnut.2022.821900 URL |
[160] |
Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases[J]. Gastroenterology, 2021, 160(4): 1050-1066.
doi: 10.1053/j.gastro.2020.06.100 pmid: 33347881 |
[161] |
Trikha SRJ, Lee DM, Ecton KE, et al. Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance[J]. Gut Microbes, 2021, 13(1): 1940791.
doi: 10.1080/19490976.2021.1940791 URL |
[162] |
Di Martino L, De Salvo C, Buela KA, et al. Candida tropicalis infection modulates the gut microbiome and confers enhanced susceptibility to colitis in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 901-923.
doi: 10.1016/j.jcmgh.2021.11.008 URL |
[163] | 孙静, 杜蕾, 丁玉春, 等. 无菌猪的制备与微生物质量控制[J]. 中国实验动物学报, 2017, 25(6): 699-702. |
Sun J, Du L, Ding YC, et al. Breeding and microbiological quality control of germ-free pigs[J]. Acta Lab Animalis Sci Sin, 2017, 25(6): 699-702. | |
[164] |
Rose EC, Blikslager AT, Ziegler AL. Porcine models of the intestinal microbiota: the translational key to understanding how gut commensals contribute to gastrointestinal disease[J]. Front Vet Sci, 2022, 9: 834598.
doi: 10.3389/fvets.2022.834598 URL |
[165] | 孙静, 葛良鹏, 丁玉春, 等. SPF猪的培育、质量控制及其应用[J]. 中国实验动物学报, 2022, 30(6): 824-829. |
Sun J, Ge LP, Ding YC, et al. Production, quality control and application of SPF pigs[J]. Acta Lab Animalis Sci Sin, 2022, 30(6): 824-829. | |
[166] |
Qi RL, Sun J, Qiu XY, et al. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets[J]. Sci Rep, 2021, 11(1): 11237.
doi: 10.1038/s41598-021-90881-5 pmid: 34045661 |
[167] |
Zhang JW, Shen Y, Yang GT, et al. Commensal microbiota modulates phenotypic characteristics and gene expression in piglet Peyer's patches[J]. Front Physiol, 2023, 14: 1084332.
doi: 10.3389/fphys.2023.1084332 URL |
[168] |
Zhou H, Sun J, Yu B, et al. Gut microbiota absence and transplantation affect growth and intestinal functions: an investigation in a germ-free pig model[J]. Anim Nutr, 2021, 7(2): 295-304.
doi: 10.1016/j.aninu.2020.11.012 pmid: 34258417 |
[1] | 邱小宇, 刘作华, 齐仁立. 无菌猪和普通猪早期脂肪发育及脂肪组织基因转录表达的差异[J]. 生物技术通报, 2021, 37(5): 56-66. |
[2] | 谢果珍, 唐圆, 吴仪, 黄莉莉, 谭周进. 七味白术散总苷对菌群失调腹泻小鼠肠道微生物及酶活性的影响[J]. 生物技术通报, 2021, 37(12): 124-131. |
[3] | 陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226. |
[4] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[5] | 赵旭, 徐群, 侯彦茹, 李明宇, 张雅宁, 汪海. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235. |
[6] | 王晶, 戴东, 武书庚, 张海军, 齐广海. 鸡肠道微生物演替与早期定植的研究进展[J]. 生物技术通报, 2020, 36(2): 1-8. |
[7] | 黄海敏, 蓝秀万, 吴耀生. 肠道微生物与性激素相关疾病研究进展[J]. 生物技术通报, 2020, 36(2): 77-82. |
[8] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[9] | 强晓楠, 李鑫, 陈佳, 廖红东, 于峰. 拟南芥RALF多肽家族的功能多样性初步分析[J]. 生物技术通报, 2019, 35(1): 2-10. |
[10] | 乃门塔娜,张燕军,刘东军,李金泉. HFSC标记在阿尔巴斯绒山羊毛囊及毛囊干细胞中的表达[J]. 生物技术通报, 2018, 34(5): 201-205. |
[11] | 杜若曦, 郭明璋, 谢子鑫, 贺晓云, 黄昆仑, 许文涛. 合成生物学在改善肠道健康状态中的应用与展望[J]. 生物技术通报, 2018, 34(1): 49-59. |
[12] | 马晓玲,刘红春,李江伟. 携带人卵泡刺激素受体的慢病毒载体疫苗的构建及其免疫效应检测[J]. 生物技术通报, 2016, 32(3): 148-154. |
[13] | 李东萍, 郭明璋, 许文涛. 16S rRNA测序技术在肠道微生物中的应用研究进展[J]. 生物技术通报, 2015, 31(2): 71-77. |
[14] | 张振华,鲍王波,余冉,王长永,刘燕. 鹌鹑肠道微生物PCR-DGGE方法的优化[J]. 生物技术通报, 2015, 31(1): 73-78. |
[15] | 贾欣, 徐诗涵 ,梁志宏, 黄昆仑. 赭曲霉毒素A的微生物脱毒研究进展[J]. 生物技术通报, 2014, 0(12): 18-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||