生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 67-76.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1152

• 技术与方法 • 上一篇    下一篇

基于超分辨成像增强对拟南芥内质网动态变化的研究

张以恒1,2,3(), 刘家正4,5,6, 王雪晨2,3, 孙政哲7, 薛雅郡2,3, 汪沛1, 韩华4,5,6, 郑宏伟8(), 李晓娟2,3()   

  1. 1.北京林业大学理学院 林木资源高效生产全国重点实验室,北京 100083
    2.北京林业大学生物科学与技术学院 林木、花卉遗传育种教育部重点实验室,北京 100083
    3.北京林业大学生物科学与技术学院 林木育种与生态修复国家工程研究中心,北京 100083
    4.中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190
    5.中国科学院大学未来技术学院,北京 100049
    6.脑认知功能图谱与类脑智能交叉研究平台,北京 101499
    7.华中科技大学计算机科学与技术学院,武汉 430074
    8.中国科学院新疆生态与地理研究所,乌鲁木齐 830001
  • 收稿日期:2023-12-08 出版日期:2024-04-26 发布日期:2024-04-30
  • 通讯作者: 郑宏伟,男,博士,研究员,研究方向:生物物理和人工智能;E-mail: hzheng@ms.xjb.ac.cn
    李晓娟,女,博士,教授,研究方向:植物细胞生物学;E-mail: lixj@bjfu.edu.cn
  • 作者简介:张以恒,女,硕士研究生,研究方向:生物信息检测与处理、植物细胞生物学;E-mail: zhangyh20@bjfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(91954202);国家自然科学基金项目(31871349);国家自然科学基金项目(32171461);第三次新疆综合科考(2022xikk1200);SunTrust Banks 2030-大型项目(2021ZD0204500);SunTrust Banks 2030-大型项目(2021ZD0204503);北京林业大学科技创新计划项目(2019J003003)

Dynamic Changes of Arabidopsis Endoplasmic Reticulum Based on Enhanced Super-resolution Images

ZHANG Yi-heng1,2,3(), LIU Jia-zheng4,5,6, WANG Xue-chen2,3, SUN Zheng-zhe7, XUE Ya-jun2,3, WANG Pei1, HAN Hua4,5,6, ZHENG Hong-wei8(), LI Xiao-juan2,3()   

  1. 1. National Key Laboratory for Efficient Production of Forest Resources, School of Science, Beijing Forestry University, Beijing 100083
    2. Key Laboratory of Forest and Flower Genetic Breeding, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083
    3. National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083
    4. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190
    5. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049
    6. Transdisciplinary Platform of Functional Connectome and Brain-inspired Intelligence, Chinese Academy of Sciences, Beijing 101499
    7. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074
    8. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830001
  • Received:2023-12-08 Published:2024-04-26 Online:2024-04-30

摘要:

目的】为了解决在植物细胞内质网的研究中,成像速度与成像分辨率难以同时满足准确识别精细结构和动态变化的瓶颈问题。【方法】使用结构光照明显微成像技术,对拟南芥活体材料中的内质网进行超分辨实时成像,并优化了自监督去噪框架(Blind2Unblind),以进一步提升快速显微成像的信噪比。【结果】建立了对时间序列成像中内质网结构进行定量分析的方法,并通过对环境胁迫下内质网结构动态变化的追踪进一步验证了方法的有效性。此外,各类参数的相关性分析显示管状内质网的面积和长度与生长端和三叉点的数量显著正相关,而内质网池和整体流的面积与管的面积和长度显著负相关。【结论】优化的自监督去噪框架提升了植物活细胞中结构光照明显微图像的信噪比,实现了管状内质网、内质网池、整体流、生长端和节点等复杂结构和动态的量化,各结构间存在复杂相关性。

关键词: 拟南芥, 内质网, 动态, 超分辨率成像, 成像增强, 量化分析

Abstract:

Objective】This work is to solve the bottleneck of accurately identifying fine structures, and dynamic changes cannot be concurrently met by imaging speed and imaging resolution in the study of plant cell endoplasmic reticulum.【Method】This study employed structured illumination microscopy techniques to achieve super-resolution real-time imaging of the ER in live Arabidopsis materials. Additionally, a self-supervised denoising framework(Blind2Unblind)was optimized to further enhance the signal-to-noise ratio of rapid microscopic imaging.【Result】Based on the images with high quality, a method for quantitative analysis of ER structures using time-lapse images was established. Moreover, detections of changes in ER structures under environmental stress were conducted to verify the effectiveness of the method. Moreover, correlation analyses of various parameters indicated a significantly positive correlation between the area,length of tubular ER and the number of growth tips and three-way junctions, while the area of ER cisternae and bulk flow had a significantly negative correlation with the area and length of tubules.【Conclusion】The optimized self-supervised denoising framework in this study improves the signal-to-noise ratio of images with structure illumination microscopy in living plant cells, enabling the quantification of complex structures and dynamics, such as tubular ER, cisternae in ER, bulk flow, growth tips, and nodes, with complex correlations among the structures.

Key words: Arabidopsis thaliana, endoplasmic reticulum, dynamics, super-resolution imaging, image enhancement, quantitative analysis