生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 244-254.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0101
韩凯(), 周永顺, 张凯月, 王路, 高剑峰(), 陈福龙()
收稿日期:
2024-01-24
出版日期:
2024-08-26
发布日期:
2024-07-30
通讯作者:
陈福龙,男,博士,副教授,研究方向:生物化学与分子生物学、植物生理学;E-mail: fulongch@shzu.edu.cn;作者简介:
韩凯,男,博士研究生,研究方向:生物化学与分子生物学;E-mail: 3173247216@qq.com
基金资助:
HAN Kai(), ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng(), CHEN Fu-long()
Received:
2024-01-24
Published:
2024-08-26
Online:
2024-07-30
摘要:
【目的】研究沙漠小球藻(desert Chlorella)应对干旱胁迫的生理响应,分离培养抗旱能力强的小球藻,为沙漠微藻资源的开发和生产奠定基础。【方法】以2株分离自新疆塔克拉玛干沙漠和古尔班通古特沙漠中的小球藻和1株购买自中国科学院淡水藻种库普通淡水小球藻(Chlorella vulgaris)为材料,使用Bold’s Basal Medium(BBM)作为培养基,通过聚乙二醇(PEG6000)模拟不同程度干旱胁迫,测定3株小球藻在干旱胁迫下的生长速度和生理生化指标,并通过主成分分析、隶属函数、抗旱性综合度量值等方法评价3株小球藻抗旱能力。【结果】干旱胁迫能使小球藻细胞密度(OD680)和生物量(干重)下降,叶绿素 a、叶绿素 b 含量降低,丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性上升,但是可溶性糖、蛋白质、脯氨酸(Pro)含量和过氧化氢酶(CAT)活性则因胁迫程度和时间的变化而不同,主成分分析显示糖、Pro、SOD、CAT、叶绿素b在小球藻抗干旱过程中发挥重要作用;根据抗旱系数分析,重度干旱时沙漠小球藻可溶性糖、蛋白质、Pro、SOD、CAT比普通时作用更强。【结论】综合评价显示3株小球藻的抗旱性强弱依次为:沙漠小球藻TLD 6B>沙漠小球藻GTD 8A1>普通小球藻FACHB-2338,且沙漠小球藻在生长速度、糖含量、蛋白质含量方面相比普通小球藻更具有优势。
韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254.
HAN Kai, ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng, CHEN Fu-long. Evaluation of Drought Resistance of Three Chlorella Strains[J]. Biotechnology Bulletin, 2024, 40(8): 244-254.
图1 干旱胁迫下小球藻细胞浓度、生物量 A和E,B和F,C、G,D和H分别为0%、5%、15%和25% PEG6000胁迫时小球藻生理指标;不同小写字母表示同一处理、同一时间不同小球藻间差异的显著性(P<0.05);CV:FACHB-2338;下同
Fig. 1 Cell concentration and biomass of Chlorella vulgaris under drought stress A and E, B and F, C and G, D and H refers to physiological indexes of Chlorella vulgaris under 0%, 5%, 15% and 25% PEG6000 stress, respectively. Different lowercase letters indicate significant difference among different chlorella at the same treatment and at the same time(P < 0.05);CV:FACHB-2338. The same below
PEG6000浓度 PEG6000 concentration/% | 小球藻生物量体积产率 Biomass volume yield of C. vulgaris /(g·L-1·d-1) | |||
---|---|---|---|---|
6B | 8A1 | FACHB-2338 | ||
0 | 0.91 | 0.87 | 0.82 | |
5 | 0.82 | 0.78 | 0.73 | |
15 | 0.55 | 0.51 | 0.35 | |
25 | 0.22 | 0.16 | 0.08 |
表1 干旱胁迫下小球藻生物量体积产率
Table 1 Biomass volume yield of C. vulgaris under drought stress
PEG6000浓度 PEG6000 concentration/% | 小球藻生物量体积产率 Biomass volume yield of C. vulgaris /(g·L-1·d-1) | |||
---|---|---|---|---|
6B | 8A1 | FACHB-2338 | ||
0 | 0.91 | 0.87 | 0.82 | |
5 | 0.82 | 0.78 | 0.73 | |
15 | 0.55 | 0.51 | 0.35 | |
25 | 0.22 | 0.16 | 0.08 |
图2 干旱胁迫下小球藻可溶性糖含量 A-D分别表示0%、5%、15%和25% PEG6000胁迫处理,下同
Fig. 2 Soluble sugar content of C. vulgaris under drought stress A-D indicate 0, 5%, 15% and 25% PEG6000 stress, respectively. The same below
小球藻种类 Chlorella species | OD680 | 干重 Dry weight | 可溶性糖 Soluble sugar | 可溶性蛋白质 Soluble protein | Pro | MDA | CAT | SOD | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b |
---|---|---|---|---|---|---|---|---|---|---|
6B | 0.269 | 0.412 | 2.812 | 1.434 | 1.569 | 3.034 | 1.440 | 2.384 | 0.583 | 0.565 |
8A1 | 0.197 | 0.361 | 2.383 | 1.465 | 1.394 | 3.365 | 1.474 | 1.891 | 0.555 | 0.592 |
FACHB-2338 | 0.169 | 0.307 | 1.880 | 1.286 | 1.280 | 3.592 | 1.332 | 1.742 | 0.530 | 0.549 |
平均值Mean | 0.212 | 0.36 | 2.358 | 1.359 | 1.414 | 3.330 | 1.415 | 2.005 | 0.558 | 0.569 |
表2 小球藻各生理指标的抗旱系数
Table 2 Drought resistance coefficients of each physiological index of C. vulgaris
小球藻种类 Chlorella species | OD680 | 干重 Dry weight | 可溶性糖 Soluble sugar | 可溶性蛋白质 Soluble protein | Pro | MDA | CAT | SOD | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b |
---|---|---|---|---|---|---|---|---|---|---|
6B | 0.269 | 0.412 | 2.812 | 1.434 | 1.569 | 3.034 | 1.440 | 2.384 | 0.583 | 0.565 |
8A1 | 0.197 | 0.361 | 2.383 | 1.465 | 1.394 | 3.365 | 1.474 | 1.891 | 0.555 | 0.592 |
FACHB-2338 | 0.169 | 0.307 | 1.880 | 1.286 | 1.280 | 3.592 | 1.332 | 1.742 | 0.530 | 0.549 |
平均值Mean | 0.212 | 0.36 | 2.358 | 1.359 | 1.414 | 3.330 | 1.415 | 2.005 | 0.558 | 0.569 |
指标 Index | PC1 | PC2 |
---|---|---|
OD680 | 0.94 | -0.34 |
干重Dry weight | 0.997 | -0.082 |
可溶性糖 Soluble sugar | 0.999 | -0.052 |
可溶性蛋白质 Soluble protein | 0.832 | 0.555 |
脯氨酸Pro | 0.976 | -0.218 |
丙二醛MDA | -0.979 | 0.204 |
过氧化氢酶CAT | 0.792 | 0.611 |
超氧化物歧化酶SOD | 0.922 | -0.388 |
叶绿素a Chlorophyll a | 0.991 | -0.13 |
叶绿素b Chlorophyll b | 0.457 | 0.889 |
特征值 Eigenvalue | 8.147 | 1.853 |
贡献率 Contribution rate/% | 81.473 | 18.527 |
累计贡献率 Accumulated contribution rate/% | 81.473 | 100 |
表3 小球藻各生理性状的主成分分析
Table 3 Principal component analysis of physiological characters of C. vulgaris
指标 Index | PC1 | PC2 |
---|---|---|
OD680 | 0.94 | -0.34 |
干重Dry weight | 0.997 | -0.082 |
可溶性糖 Soluble sugar | 0.999 | -0.052 |
可溶性蛋白质 Soluble protein | 0.832 | 0.555 |
脯氨酸Pro | 0.976 | -0.218 |
丙二醛MDA | -0.979 | 0.204 |
过氧化氢酶CAT | 0.792 | 0.611 |
超氧化物歧化酶SOD | 0.922 | -0.388 |
叶绿素a Chlorophyll a | 0.991 | -0.13 |
叶绿素b Chlorophyll b | 0.457 | 0.889 |
特征值 Eigenvalue | 8.147 | 1.853 |
贡献率 Contribution rate/% | 81.473 | 18.527 |
累计贡献率 Accumulated contribution rate/% | 81.473 | 100 |
小球藻种类 Material code | D 值 D value | 排序 Rank |
---|---|---|
6B | 0.866 | 1 |
8A1 | 0.772 | 2 |
FACHB-2338 | -0.079 | 3 |
表4 小球藻抗旱性综合评价排序
Table 4 Comprehensive evaluation and ranking of drought resistance of C. vulgaris
小球藻种类 Material code | D 值 D value | 排序 Rank |
---|---|---|
6B | 0.866 | 1 |
8A1 | 0.772 | 2 |
FACHB-2338 | -0.079 | 3 |
[1] | Garcia-Perez P, Cassani L, Garcia-Oliveira P, et al. Algal nutraceuticals: a perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics[J]. Food Chem, 2023, 409: 135295. |
[2] | Neag E, Stupar Z, Maicaneanu SA, et al. Advances in biodiesel production from microalgae[J]. Energies, 2023, 16(3): 1129. |
[3] | Matchim Kamdem MC, Lai NJ. Alkyl carbamate ionic liquids for permeabilization of microalgae biomass to enhance lipid recovery for biodiesel production[J]. Heliyon, 2023, 9(1): e12754. |
[4] | Lafarga T, Mayre E, Echeverria G, et al. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods[J]. LWT, 2019, 115: 108439. |
[5] | Sánchez F, Lozano-Muñoz I, Muñoz S, et al. Effect of dietary inclusion of microalgae(Nannochloropsis gaditana and Schizochytrium spp)on non-specific immunity and erythrocyte maturity in Atlantic salmon fingerlings[J]. Fish Shellfish Immunol, 2023, 140: 108975. |
[6] |
马浩天, 李润植, 张宏江, 等. 基于微藻培养处理畜禽养殖废水的研究进展[J]. 生物技术通报, 2018, 34(11): 83-90.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0484 |
Ma HT, Li RZ, Zhang HJ, et al. Research progress on the treatment of wastewater from poultry and livestock breeding based on the microalgae cultivation[J]. Biotechnol Bull, 2018, 34(11): 83-90. | |
[7] | Choudhary P, Assemany PP, Naaz F, et al. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass[J]. Sci Total Environ, 2020, 726: 137961. |
[8] | 张丙昌, 苏淼, 龚健. 生物结皮中人工培养藻株与野生藻株的形态学差异[J]. 干旱区研究, 2015, 32(6): 1213-1219. |
Zhang BC, Su M, Gong J. Morphological variation between artificially cultured cyanobacteria strain and natural cyanobacteria strain in microbiotic soil crusts[J]. Arid Zone Res, 2015, 32(6): 1213-1219. | |
[9] | Lu Q, Xiao Y, Lu YJ. Employment of algae-based biological soil crust to control desertification for the sustainable development: a mini-review[J]. Algal Res, 2022, 65: 102747. |
[10] | Banerjee A, Guria C, Maiti SK. Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock[J]. Energy, 2016, 115: 1272-1290. |
[11] | Sachin Powar R, Singh Yadav A, Siva Ramakrishna C, et al. Algae: a potential feedstock for third generation biofuel[J]. Mater Today Proc, 2022, 63: A27-A33. |
[12] | Abbasi M, Pishvaee MS, Mohseni S. Third-generation biofuel supply chain: a comprehensive review and future research directions[J]. J Clean Prod, 2021, 323: 129100. |
[13] | Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production[J]. BioEnergy Res, 2008, 1(1): 20-43. |
[14] |
李苑虹, 郭昱昊, 曹燕, 等. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1166 |
Li YH, Guo YH, Cao Y, et al. Research progress in the microalgal growth and accumulation of target products regulated by exogenous phytohormone[J]. Biotechnol Bull, 2023, 39(6): 61-72. | |
[15] | Pagnussat LA, Do Nascimento M, Maroniche G, et al. Azospirillum baldaniorum improves acclimation, lipid productivity and oxidative response of a microalga under salt stress[J]. Algal Res, 2023, 74: 103192. |
[16] | Wang M, Zhu Q, Li XX, et al. Effect of drought stress on degradation and remodeling of membrane lipids in Nostoc flagelliforme[J]. Foods, 2022, 11(12): 1798. |
[17] | Hasnain M, Abideen Z, Hashmi S, et al. Assessing the potential of nutrient deficiency for enhancement of biodiesel production in algal resources[J]. Biofuels, 2023, 14(1): 1-34. |
[18] | 周浩媛, 刘翔, 高政权, 等. 我国微藻产业标准化现状及展望[J]. 海洋科学, 2023, 47(6): 144-151. |
Zhou HY, Liu X, Gao ZQ, et al. Current circumstances, problems, and strategies of microalgae industry standardization in China[J]. Mar Sci, 2023, 47(6): 144-151. | |
[19] |
Cavieres L, Bazaes J, Marticorena P, et al. Pilot-scale phycoremediation using Muriellopsis sp. for wastewater reclamation in the Atacama Desert: microalgae biomass production and pigment recovery[J]. Water Sci Technol, 2021, 83(2): 331-343.
doi: 10.2166/wst.2020.576 pmid: 33504698 |
[20] | 王狄宁, 艾克拜尔·依米提, 吕海英. 新疆北部地区湿地鼓藻类植物多样性及其与环境因子的关系[J]. 西北植物学报, 2022, 42(12): 2123-2132. |
Wang DN, Akbar YMT, Lü HY. Diversity of desmids and its relationship with environmental factors in wetlands of northern Xinjiang[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(12): 2123-2132. | |
[21] | 刘乐汉, 吕杰, 马媛, 等. 古尔班通古特沙漠藻类结皮中微生物群落空间分异特征[J]. 生态学报, 2023, 43(5): 1923-1935. |
Liu YH, Lyu J, Ma Y, et al. Spatial differentiation of microbial communities in Gurbantunggut Desert algae crust, Xinjiang, China[J]. Acta Ecol Sin, 2023, 43(5): 1923-1935. | |
[22] |
王丹, 龚春霞, 苟亚峰, 等. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103.
doi: 10.11686/cyxb20140310 |
Wang D, Gong CX, Gou YF, et al. Phylogenetic analyses on the biological crusts of several algae in the Taklimakan Desert[J]. Acta Prataculturae Sin, 2014, 23(3): 97-103. | |
[23] |
徐晓莹, 程天佑, 陈林, 等. 两种培养基间雨生红球藻细胞生长分化差异及磷的作用[J]. 过程工程学报, 2016, 16(5): 840-848.
doi: 10.12034/j.issn.1009-606X.216171 |
Xu XY, Cheng TY, Chen L, et al. Effects of phosphorus on H. pluvialis cell propagation and differentiation in two medium[J]. Chin J Process Eng, 2016, 16(5): 840-848. | |
[24] | 汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999. |
Tang ZC. Experimental Guide of Modern Plant Physiology[M]. Beijing: Science Press, 1999. | |
[25] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
pmid: 942051 |
[26] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[27] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6): 153-155. |
Li DX, Guo YX, Yun HY, et al. Determined methods of chlorophyll from maize[J]. Chin Agric Sci Bull, 2005, 21(6): 153-155.
doi: 10.11924/j.issn.1000-6850.0506153 |
|
[28] |
于国红, 刘朋程, 李磊, 等. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0305 |
Yu GH, Liu PC, Li L, et al. Physiological responses of potato in different genotypes to drought stress[J]. Biotechnol Bull, 2022, 38(5): 56-63. | |
[29] | 李涛. 陕西关中地区几种宿根花卉抑菌性与抗旱性研究[D]. 杨凌: 西北农林科技大学, 2010. |
Li T. Study on the bacteriostasis and drought tolerance of several perennial root flower plants in Guanzhong region of Shaan xi province[D]. Yangling: Northwest A & F University, 2010. | |
[30] | Yang YH, Du L, Hosokawa M, et al. Total lipids content, lipid class and fatty acid composition of ten species of microalgae[J]. J Oleo Sci, 2020, 69(10): 1181-1189. |
[31] | 孙小琴, 孙昕, 李鹏飞, 等. 紫外辐射对小球藻光合性能及油脂积累的影响[J]. 中国油脂, 2019, 44(12): 114-119. |
Sun XQ, Sun X, Li PF, et al. Effect of UV radiation on photosynthetic performance and lipid accumulation of Chlorella vulgaris[J]. China Oils Fats, 2019, 44(12): 114-119. | |
[32] | Kleiner FH, Helliwell KE, Chrachri A, et al. Cold-induced[Ca2+]cyt elevations function to support osmoregulation in marine diatoms[J]. Plant Physiol, 2022, 190(2): 1384-1399. |
[33] | Martin L, Esbaugh AJ. Osmoregulatory plasticity during hypersaline acclimation in red drum, Sciaenops ocellatus[J]. J Comp Physiol B, 2021, 191(4): 731-740. |
[34] | 周娟. 干旱胁迫下发状念珠藻生理响应及耐旱相关基因的克隆与分析[D]. 银川: 宁夏大学, 2016. |
Zhou J. Physiological response under drought stress and the cloning and analysis of drought-tolerance related genes in Nostoc flagelliforme[D]. Yinchuan: Ningxia University, 2016. | |
[35] |
Saber H, El-Sheekh MM, Ibrahim A, et al. Effect of UV-B radiation on amino acids profile, antioxidant enzymes and lipid peroxidation of some cyanobacteria and green algae[J]. Int J Radiat Biol, 2020, 96(9): 1192-1206.
doi: 10.1080/09553002.2020.1793025 pmid: 32659138 |
[36] | 赵建刚, 唐涛, 张建能, 等. 地西他滨暴露下2种典型甲藻生长及其抗氧化响应研究[J]. 生态毒理学报, 2022, 17(3): 468-476. |
Zhao JG, Tang T, Zhang JN, et al. Studies on growth and antioxidant responses of two dinoflagellate species under exposure to decitabine[J]. Asian J Ecotoxicol, 2022, 17(3): 468-476. | |
[37] | Zhou GZ, Liu CC, Cheng Y, et al. Molecular evolution and functional divergence of stress-responsive Cu/Zn superoxide dismutases in plants[J]. Int J Mol Sci, 2022, 23(13): 7082. |
[38] | Ghorbel M, Feki K, Tounsi S, et al. The putative auto-inhibitory domain of durum wheat catalase(TdCAT1)positively regulates bacteria cells in response to different stress conditions[J]. Antioxidants, 2022, 11(9): 1820. |
[39] |
李彩霞, 兰海燕. 荒漠植物柽柳抗逆机制的研究进展[J]. 生物技术通报, 2021, 37(5): 128-140.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1040 |
Li CX, Lan HY. Research progress in the stress tolerance mechanisms of desert plant Tamarix spp[J]. Biotechnol Bull, 2021, 37(5): 128-140. | |
[40] | Mandal R, Dutta G. From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule[J]. Sens Int, 2020, 1: 100058. |
[41] | 季元祖, 张德, 赵军营, 等. 花椒抗旱性研究进展[J]. 干旱地区农业研究, 2023, 41(5): 302-310. |
Ji YZ, Zhang D, Zhao JY, et al. Research progress on drought stress response of Chinese prickly ash[J]. Agric Res Arid Areas, 2023, 41(5): 302-310. | |
[42] | 冯天, 孙守瑞, 宋佳美, 等. 高碳低氮条件下培养基磷水平对莱茵衣藻生长及油脂合成的影响[J/OL]. 中国油脂, 2024. DOI: 10.19902/j.cnki.zgyz.1003-7969.230674. |
Feng T, Sun SR, Song JM, et al. The effect of phosphorus levels in the culture medium on the growth and oil synthesis of Chlamydomonas reinhardtii under high carbon and low nitrogen conditions[J/OL]. China Oils Fats, 2024. DOI: 10.19902/j.cnki.zgyz.1003-7969.230674. | |
[43] | 张云飞, 李斌, 刘财礼, 等. 纳米银胁迫对三角褐指藻生长、光合色素和叶绿素荧光参数的影响[J/OL]. 海洋湖沼通报, 2024. https://link.cnki.net/urlid/37.1141.P.20240124.1820.004. |
Zhang YF, Li B, Liu CL, et al. The effects of nanosilver stress on the growth, photosynthetic pigments, and chlorophyll fluorescence parameters of Phaeodactylum tricornutum Bohlin[J/OL]. Trans Oceanol Limnol, 2024. https://link.cnki.net/urlid/37.1141.P.20240124.1820.004. | |
[44] | 陈萌萌. 微藻-生物炭联合固沙及其对荒漠土壤的改良作用[D]. 衡阳: 南华大学, 2019. |
Chen MM. Effects of microalgae-biochar on sand fixation and improvement of desert soil[D]. Hengyang: University of South China, 2019. | |
[45] | 李玉领, 唐东山, 李向阳, 等. 沙蒿胶-微藻联合固沙效果的试验研究[J]. 工业安全与环保, 2018, 44(3): 56-60. |
Li YL, Tang DS, Li XY, et al. The experiment research on the sand fixation effect of the joint of microalgae and Artemisia sphaerocephala krasch. gum[J]. Ind Saf Environ Prot, 2018, 44(3): 56-60. |
[1] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
[2] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[3] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[4] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[5] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[6] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[7] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[8] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[9] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[10] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[11] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[12] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[13] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[14] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
[15] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||