生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 20-31.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0756

• 作物高光效专题 • 上一篇    下一篇

作物叶绿体发育的温度调控研究进展

蒋韫博(), 陈雪雪(), 赵玉胜()   

  1. 育种前沿技术实验室 中国科学院遗传与发育生物学研究所,北京 100101
  • 收稿日期:2025-07-15 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 陈雪雪,女,博士,助理研究员,研究方向 :植物温度适应性;E-mail: xxchen@genetics.ac.cn
    赵玉胜,男,博士,研究员,研究方向 :植物温度适应性;E-mail: yusheng.zhao@genetics.ac.cn
  • 作者简介:蒋韫博,男,硕士研究生,研究方向 :植物温度适应性;E-mail: yunbo.jiang@genetics.ac.cn
  • 基金资助:
    农业生物育种国家科技重大专项(2023ZD04071)

Research Progress in Temperature Regulation of Chloroplast Development in Crops

JIANG Yun-bo(), CHEN Xue-xue(), ZHAO Yu-sheng()   

  1. Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101
  • Received:2025-07-15 Published:2025-10-26 Online:2025-10-28

摘要:

叶绿体是植物进行光合作用的核心场所,作为植物细胞特有的半自主性细胞器,其发育过程受到植物内在生长发育信号和外界环境信号的双重调控。其中,环境温度是影响叶绿体发育的重要外界因素,它通过调控叶绿体膜系统、形态结构、质体分裂与分化等多个方面,最终影响叶绿体的发育及功能。本综述首先概述了叶绿体的结构、功能及发育过程对环境温度的响应机制;其次,通过系统梳理植物叶色突变体的研究进展,总结了叶绿体发育受温度调控的分子基础;并进一步从叶绿体基因的转录调控、转录后调控以及蛋白质合成与稳态三个层次,深入讨论了叶绿体发育对温度变化的应答机制。最后,从机制研究和生产实践两个角度,对未来如何利用叶色基因揭示叶绿体发育的温度响应机制提出了总结与展望。综上,本综述全面分析了环境温度变化对作物叶绿体发育及生理功能的影响,并进一步探讨温度对作物光合作用的潜在影响,以期为全球气候变化下的作物广适性高光效分子设计育种提供理论支持与实践指导。

关键词: 叶绿体发育, 温度, 质体基因表达, 共转录调控

Abstract:

Chloroplasts are the key organelles responsible for photosynthesis in plants. As semi-autonomous structures unique to plant cells, their development is regulated by both internal growth and developmental signals as well as external environmental cues. Among these factors, temperature plays a critical role in shaping chloroplast development. It influences various aspects, such as the chloroplast membrane system, morphology, plastid division, and differentiation, ultimately impacting their development and function. This review begins with a concise overview of the structure, function, and developmental processes of chloroplasts in response to temperature fluctuations. It then summarizes research progress on plant leaf color mutants, shedding light on the molecular basis of temperature regulation in chloroplast development. Additionally, the review explores the mechanisms of temperature regulation in chloroplasts across three levels: Transcriptional regulation of chloroplast genes, post-transcriptional regulation of chloroplast genes, and protein synthesis and homeostasis in chloroplast. Finally, it discusses future directions, offering insights into how leaf color-related genes can be leveraged to uncover the mechanisms underlying temperature-responsive chloroplast development, with applications in both research and agricultural practices. In conclusion, this review thoroughly examines how environmental temperature changes affect chloroplast development and physiological functions in crops, while also exploring the broader implications for photosynthesis. By addressing these impacts, it aims to provide theoretical insights and practical guidance for developing molecular breeding strategies that enhance crop adaptability and photosynthetic efficiency in the face of global climate change.

Key words: chloroplast development, temperature, plastid gene expression, co-transcriptional regulation